scholarly journals An Active Voltage Coordinate Control Strategy of DFIG-Based Wind Farm with Hybrid Energy Storage System

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3060
Author(s):  
Yuyan Song ◽  
Yuhong Wang ◽  
Qi Zeng ◽  
Jianquan Liao ◽  
Zongsheng Zheng ◽  
...  

In a power system with wind farms, the point of common coupling (PCC) usually suffers from voltage instability under large wind speed variations and the load impact. Using the internal converter of a doubly fed induction generator (DFIG)-based wind turbine to provide voltage support auxiliary service is an effective scheme to suppress the voltage fluctuation at PCC. To satisfy the reactive power demand of the connected grid, an active voltage coordinate control strategy with the hybrid energy storage system of the wind farm is proposed. The dynamic reactive power balance model is established to show the interaction between the reactive power limitation of the wind farm and the reactive power compensation demand of the grid. This indicates the initial conditions of the active voltage coordinate control strategy. According to the critical operating point and the operation state of the DFIG, the active and reactive power coordinate control strategy composed of active ω-β coordinate control and active β control is proposed to enhance the reactive power support capability and stabilize the grid voltage. To compensate the active power shortage, an auxiliary control strategy based on the hybrid energy storage system is introduced. The simulation results show that the proposed strategy can suppress the voltage fluctuation effectively and make full use of primary energy.

2013 ◽  
Vol 724-725 ◽  
pp. 576-581 ◽  
Author(s):  
Run Zhou Jiang ◽  
Zhen Yu Lin ◽  
Huan Teng

According to the demand of wind farm power fluctuations stabilize and the characteristics of hybrid energy storage system. Taking vanadium redox flow battery (VRB) and supercapacitor (SC) as research object, a hybrid energy storage system optimal configuration model is builted. Combined with expert systems and improved genetic algorithm proposed a hybrid energy storage system to optimize the allocation method. The method first established desire output curve of the wind farm based on grid energy saving efficiency and static voltage stability indicators, then introduce coordinate control strategy based on expert system to improved genetic algorithm to get the result of optimal configuration and verify the correctness of this model and method. Finally, analysis the performance of VRB and SC in a typical days wind farm output situation, verify the conclusions of experts coordinated control strategy can extend the vanadium battery life.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1365
Author(s):  
Mukul Chankaya ◽  
Ikhlaq Hussain ◽  
Aijaz Ahmad ◽  
Irfan Khan ◽  
S.M. Muyeen

This paper presents Nyström minimum kernel risk-sensitive loss (NysMKRSL) based control of a three-phase four-wire grid-tied dual-stage PV-hybrid energy storage system, under varying conditions such as irradiation variation, unbalanced load, and abnormal grid voltage. The Voltage Source Converter (VSC) control enables the system to perform multifunctional operations such as reactive power compensation, load balancing, power balancing, and harmonics elimination while maintaining Unity Power Factor (UPF). The proposed VSC control delivers more accurate weights with fewer oscillations, hence reducing overall losses and providing better stability to the system. The seamless control with the Hybrid Energy Storage System (HESS) facilitates the system’s grid-tied and isolated operation. The HESS includes the battery, fuel cell, and ultra-capacitor to accomplish the peak shaving, managing the disturbances of sudden and prolonged nature occurring due to load unbalancing and abnormal grid voltage. The DC link voltage is regulated by tuning the PI controller gains utilizing the Salp Swarm Optimization (SSO) algorithm to stabilize the system with minimum deviation from the reference voltage, during various simulated dynamic conditions. The optimized DC bus control generates the accurate loss component of current, which further enhances the performance of the proposed VSC control. The presented system was simulated in the MATLAB 2016a environment and performed satisfactorily as per IEEE 519 standards.


Sign in / Sign up

Export Citation Format

Share Document