scholarly journals Adaptive Scheduling for Time-Triggered Network-on-Chip-Based Multi-Core Architecture Using Genetic Algorithm

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Pascal Muoka ◽  
Daniel Onwuchekwa ◽  
Roman Obermaisser

Adaptation in time-triggered systems can be motivated by energy efficiency, fault recovery, and changing environmental conditions. Adaptation in time-triggered systems is achieved by preserving temporal predictability through metascheduling techniques. Nevertheless, utilising existing metascheduling schemes for time-triggered network-on-chip architectures poses design time computation and run-time storage challenges for adaptation using the resulting schedules. In this work, an algorithm for path reconvergence in a multi-schedule graph, enabled by a reconvergence horizon, is presented to manage the state-space explosion problem resulting from an increase in the number of scenarios required for adaptation. A meta-scheduler invokes a genetic algorithm to solve a new scheduling problem for each adaptation scenario, resulting in a multi-schedule graph. Finally, repeated nodes of the multi-schedule graph are merged, and further exploration of paths is terminated. The proposed algorithm is evaluated using various application model sizes and different horizon configurations. Results show up to 56% reduction of schedules necessary for adaptation to 10 context events, with the reconvergence horizon set to 50 time units. Furthermore, 10 jobs with 10 slack events and a horizon of 40 ticks result in a 23% average sleep time for energy savings. Furthermore, the results demonstrate the reduction in the state-space size while showing the trade-off between the size of the reconvergence horizon and the number of nodes of the multi-schedule graph.

Author(s):  
G. Leary ◽  
K. Srinivasan ◽  
K. Mehta ◽  
K.S. Chatha

DYNA ◽  
2017 ◽  
Vol 84 (201) ◽  
pp. 202 ◽  
Author(s):  
Maribell Sacanamboy Franco ◽  
Freddy Bolaños-Martinez ◽  
Álvaro Bernal-Noreña ◽  
Rubén Nieto-Londoño

Los sistemas de red en chip (NoC) fueron desarrollados originalmente para proporcionar un alto rendimiento, mediante la disponibilidad de varias unidades de procesamiento, conectadas a través de una red cableada dentro del circuito integrado. Wireless NoC (WiNoC o WNoC) son una evolución natural de los sistemas NoC, que integran una comunicación jerárquica dentro del chip para mejorar la escalabilidad. El mapeo de tareas en los sistemas WNoC representa un proceso desafiante, que a menudo implica varios objetivos de optimización, como potencia, rendimiento, productividad, uso de recursos y métricas de red. Este artículo describe un algoritmo genético basado en un enfoque para encontrar soluciones óptimas de asignación de tareas en tiempo de diseño, para sistemas embebidos que trabajan sobre un WiNoC. Los objetivos de optimización fueron: Aceleración, Consumo de Energía y Ancho de Banda. La red de destino utilizada para la simulación puede ser vista como un WiNoC jerárquica de dos niveles. El primer nivel corresponde a un conjunto de subredes que están conectadas por cables y son de tipo malla. El segundo nivel corresponde a una topología en estrella de enlaces inalámbricos, que conectan las subredes de primer nivel. El algoritmo propuesto muestra un buen desempeño en relación con los objetivos de optimización y la WiNoC heterogéneo simulada.


Sign in / Sign up

Export Citation Format

Share Document