scholarly journals Optimal Planning Method of On-load Capacity Regulating Distribution Transformers in Urban Distribution Networks after Electric Energy Replacement Considering Uncertainties

Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1457 ◽  
Author(s):  
Yu Su ◽  
Niancheng Zhou ◽  
Qianggang Wang ◽  
Chao Lei ◽  
Jian Fang
Author(s):  
Viktor Kovalenko ◽  
Serhii Levchenko ◽  
Mykola Tryputen ◽  
Vitaliy Kuznetsov ◽  
Maksym Tryputen ◽  
...  

Urgency of the research. It is well-known that electric energy characteristics are the levels of electromagnetic compatibility of electric grid providing adequate performance of any electrical means connected to the grid if the electric energy characteristics do not exceed permitted values. In the context of general idea of electromagnetic compatibility of consumers within power supply grids, power quality is the topical problem of modern electric-power supply industry. Target setting. The issue of assessing the possibility of ensuring the quality of electricity in terms of voltage deviation by consumers is very important. The problem of voltage fluctuations is relevant, so that voltage deviation have a negative impact on functioning electrical equipment Actual scientific researches and issues analysis. Papers [2-11] are devouted the effective management methods of electrical energy consumption. The articles [6-8] shows that under present conditions only system approach ensures accurate identification and prediction of electric power losses in distribution networks that are characterized by considerable ambiguity. Uninvestigated parts of general matters defining. Generalized diagram of the voltage modes characterizes the state for the entire distribution network connected to the main substation; it consists of the branched 10 kV network, all the distribution transformers, and all the 0.4 kV networks connected to those transformers. Along with the generalized diagram, values of the available voltage losses have been obtained; those values occur within 10 kV and 0.4 kV networks in terms of the favourable conditions of voltage control and the initial values of the admissible voltage deviations of electrical receivers. Moreover, that is the basis to determine operating position of control tappings of distribution transformers. The research objective. Since one of the important characteristics of electrical energy is the deviation of the voltage in the network, it is advisable to carry out its analysis in the urban distribution networks in terms of Levanevska substation, town of Zaporizhzhia. To simplify practical representation of possible voltage modes on the main substation buses and within the whole distribution networks, it is expedient to use graphic representation – so-called generalized diagram of voltage modes. That diagram helps make the analysis of voltage modes more demonstrative than analytical calculation; besides, the diagram gives great possibilities for further study. The statement of basic materials. While analyzing voltage mode in the distribution networks and determining the required law of voltage control in the main substation (MS), one should take into consideration great amount of factors effecting and complicating that study. Those factors include the following: changes in the operating mode of the network, differences in the points of connections of electrical receivers (ER) to the distribution network, differences in possible operating positions of the control tappings in the distribution transformers (DT), differences in the points of DT connections to 10 kV network, available dead zones of automatic voltage controller etc. Owing to that fact, it is required to perform generalized analysis of the voltage mode and conditions of its control within 10 kV and 0.4 kV distribution networks and on main substation buses. To do that, one should apply probabilistic calculation methods. At the same time, it is expedient to use graphic depiction (so-called generalized diagram (GD) of the voltage modes) to simplify representation of possible voltage modes on MS buses and within the whole distribution network. That diagram will help make the analysis of the voltage modes more clearly arranged than analytic calculations; moreover, it gives great opportunities for further study. Conclusions. Voltage deviation in the distribution networks has been performed and expediency of the voltage deviation control for electrically closest and farthest consumers have been analyzed in terms of Levanevska substation, town of Zaporizhzhia. Expediency of practical application of generalized diagrams for that purpose has been demonstrated. It has been defined that in the modes of maximum and minimum loads, voltage exceeds the admissible deviation norms of ± 5 %. Conclusion has been made on the expediency of more careful voltage control. Generalized diagram for 0-1 and 9-10 hours with the maximum voltage deviations has been constructed. Graph of dependences has been developed; formula of voltage deviations in the main substation, due to the voltage passing along that line, has been defined. According to the voltage data before and after the implementation of control, graphs of voltage deviations on the distribution transformer and in terms of the farthest consumer have been constructed.


Author(s):  
Liang Feng ◽  
Yichao Dong ◽  
Shouxiang Wang ◽  
Qingzhi Jian ◽  
Long Zhao ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Pierpaolo Garavaso ◽  
Fabio Bignucolo ◽  
Jacopo Vivian ◽  
Giulia Alessio ◽  
Michele De Carli

Energy communities (ECs) are becoming increasingly common entities in power distribution networks. To promote local consumption of renewable energy sources, governments are supporting members of ECs with strong incentives on shared electricity. This policy encourages investments in the residential sector for building retrofit interventions and technical equipment renovations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy system where different energy carriers are converted or stored to meet the building energy needs. Following the standardized matrix modeling approach, this paper introduces a novel methodology that aims at jointly identifying both optimal investments (planning) and optimal management strategies (operation) to supply the EC’s energy demand in the most convenient way under the current economic framework and policies. Optimal planning and operating results of five refurbishment cases for a real multi-family building are found and discussed, both in terms of overall cost and environmental impact. Simulation results verify that investing in building thermal efficiency leads to progressive electrification of end uses. It is demonstrated that the combination of improvements on building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher renewable energy source (RES) penetration, reaching a significant reduction of emissions due to decreased net energy import.


Sign in / Sign up

Export Citation Format

Share Document