scholarly journals Two-Terminal Algorithm Analysis for Unsymmetrical Fault Location on 110 kV Lines

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1193 ◽  
Author(s):  
Zuzana Bukvisova ◽  
Jaroslava Orsagova ◽  
David Topolanek ◽  
Petr Toman

This work analyses a two-terminal algorithm designed to locate unsymmetrical faults on 110 kV power transmission lines. The algorithm processes synchronized voltage and current data obtained from both ends of the protected transmission line and calculates the distance of the fault. It is based on decomposing the equivalent circuit into the positive-, negative- and zero-sequence components and finding the point where the output voltages of the right and the left side of the transmission line are equal. Compared to the conventional distance relay locator, the accuracy of this method is higher and less influenced by the fault resistance, the parallel-operated line effect and line asymmetry, as discussed in this work. It is, however, very sensitive to the synchronization accuracy. The mathematical model of the power system was created in the PSCAD (Power Systems Computer Aided Design) environment and the computational algorithm was implemented in Mathematica software.

2018 ◽  
Vol 7 (3.6) ◽  
pp. 286 ◽  
Author(s):  
C R. Jayamurthi ◽  
A Sowmiya

A Transmission line fault locality analyzing process for multi-circuit power transmission series compensated line up with phasor records as of smart electronic devices available at both split ends. During the case of unavailability of synchronize records, logical synchronization is acquire by means of an operative. During the power transmission process, the techniques consider untransposed line segment ensuing on top of two side of the power fault with the dispersed environment of transmission line. In favor of in the pink phase, current on two sides flow at the fault position be identical unlike exceptional current on two sides in a fault phase. This be checkered in excess of the line length along with the fault location is identify. The technique does not need the model of the series recompense located by at all locality on the line along with be capable of be use for both internal and external-circuit fault. It as well reflects on reactive element of the fault impedance for accurate fault position. The technique is analyzed with PSCAD/EMTDC simulation used for a multi-circuit series-compensated line in Indian smart power grid. Estimation revise confirm the strength of the technique used for different faults. 


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


2021 ◽  
Vol 14 (2) ◽  
pp. 100-107
Author(s):  
E. M. Farhadzadeh ◽  
A. Z. Muradalyiev ◽  
S. A. Muradalyiev ◽  
A. A. Nazarov

The organization of operation, maintenance and repair of the basic technological facilities of electric power systems (EPS), which are beyond their designed service life (hereinafter referred to as ageing facilities, or AFs) is one of the problems that determine the energy security of many countries, including economically developed nations. The principal cause of insufficient overall performance of AFs is the traditional focus of the EPS management on economic efficiency and the insufficient attention to reliability and safety of AFs. The tendency to nonlinear growth in the frequency of occurrence of unacceptable consequences in the EPS requires ensuring the operational reliability and safety of AFs. The averaged estimates of reliability and safety used at designing power facilities are not suitable for characterization of overall operational performance. Among the basic and the least investigated (in terms of operational reliability and safety) EPS facilities are overhead power transmission lines (OPL) with a voltage of 110 кV and above. This is for a reason. OPL are electric power facilities with elements distributed along a multi-kilometer line (supports, insulators, wires, accessories, etc.). That is what makes the organization of continuous monitoring of the technical condition of each of these elements, and, consequently, the assessment of operational reliability and safety, so problematic. A method is suggested for assessment of “weak links” among the operated OPL on operative intervals of time along with a method for assessment of the technical condition of OPL at examination of a representative sample.


2020 ◽  
Vol 23 (2) ◽  
pp. 16-19
Author(s):  
G. SHEINA ◽  

This paper investigates a mathematical model of one elements of the power supply system - power transmission lines. The type of models depends on the initial simplifications, which in turn are determined by the complexity of the physics of processes. The task of improving the accuracy of modeling of emergency processes in the power system is due to the significant complexity of modern power systems and their equipment, high-speed relay protection, automation of emergency management and the introduction of higher-speed switching equipment. One of the reasons for a significant number of serious emergencies in the system is the lack of complete and reliable information for modeling modes in the design and operation of power systems. The development of a mathematical model of a three-phase power line, which provides adequate reflection of both normal and emergency processes, is relevant. The advanced mathematical model of power transmission lines allows to investigate various operational modes of electric networks. The improved mathematical model of the power transmission line reflects all the features of physical processes at state modes and transient process and provides sufficient accuracy of the results. The type of mathematical model of power transmission lines depends on the accepted simplifications, depending on the task of research. The purpose of this work is to analyze the mathematical model of the power transmission line to study the modes of operation of the power supply system, with the possibility of its application to take into account all the design features of overhead and cable power lines. The mathematical model of the power line for the study of the modes of operation of the power supply system is analyzed. It is used to take into account the design features of overhead and cable power lines, skin effect.


2007 ◽  
Vol 7 (16) ◽  
pp. 2327-2332 ◽  
Author(s):  
Salif B. Sissoko . ◽  
Ahmed N. Abdalla . ◽  
Jing Zhang . ◽  
S.J. Cheng .

Author(s):  
Guanghong Tao ◽  
Lijin Fang

Purpose The purpose of this paper is to introduce a robot mechanism designed for power transmission line inspection. The focus for this design is on obstacle-crossing ability with a goal to create a robot moving and crossing obstacle on not only the straight line but also the steering line. Design/methodology/approach A novel four-unit tri-arm serial robot mechanism is proposed. Every novel unit designed for pitching motion is based on parallelogram structure, which is driven by cables and only one motor. There is gripper-wheel compounding mechanism mounted on the arm. The prototype and obstacle environments are established, and the obstacle-crossing experiments are conducted. Findings The novel unit mechanism and robot prototype have been tested in the lab. The prototype has demonstrated the obstacle-crossing ability when moving and crossing fundamental obstacles on the line. The experimental results show that the robot mechanism meets the obstacle-crossing requirements. Practical implications The novel robot technology can be used for defect inspection of power transmission line by power companies. Social implications It stands to lower the intense and risk of inspection works and reduce the costs related to inspection. Originality/value Innovative features include its architecture, mobility and driving method.


Sign in / Sign up

Export Citation Format

Share Document