scholarly journals Optimal Re-Dispatching of Cascaded Hydropower Plants Using Quadratic Programming and Chance-Constrained Programming

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1604
Author(s):  
Krešimir Fekete ◽  
Srete Nikolovski ◽  
Zvonimir Klaić ◽  
Ana Androjić

Stochastic production from wind power plants imposes additional uncertainty in power system operation. It can cause problems in load and generation balancing in the power system and can also cause congestion in the transmission network. This paper deals with the problems of congestion in the transmission network, which are caused by the production of wind power plants. An optimization model for corrective congestion management is developed. Congestions are relieved by re-dispatching several cascaded hydropower plants. Optimization methodology covers the optimization period of one day divided into the 24 segments for each hour. The developed optimization methodology consists of two optimization stages. The objective of the first optimization stage is to obtain an optimal day-ahead dispatch plan of the hydropower plants that maximizes profit from selling energy to the day-ahead electricity market. If such a dispatch plan, together with the wind power plant production, causes congestion in the transmission network, the second optimization stage is started. The objective of the second optimization stage is the minimization of the re-dispatching of cascaded hydropower plants in order to avoid possible congestion. The concept of chance-constrained programming is used in order to consider uncertain wind power production. The first optimization stage is defined as a mixed-integer linear programming problem and the second optimization stage is defined as a quadratic programming (QP) problem, in combination with chance-constrained programming. The developed optimization model is tested and verified using the model of a real-life power system.

2017 ◽  
Vol 32 (3) ◽  
pp. 1108-1116 ◽  
Author(s):  
Pouyan Pourbeik ◽  
Juan J. Sanchez-Gasca ◽  
Jayapalan Senthil ◽  
James D. Weber ◽  
Pouya Sajjad Zadehkhost ◽  
...  

2021 ◽  
pp. 131-145
Author(s):  
Robert Noskov ◽  
Krešimir Fekete ◽  
Ružica Kljajić ◽  
Zvonimir Klaić

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6177
Author(s):  
Alija Mujcinagic ◽  
Mirza Kusljugic ◽  
Emir Nukic

As a result of the increased integration of power converter-connected variable speed wind generators (VSWG), which do not provide rotational inertia, concerns about the frequency stability of interconnected power systems permanently arise. If the inertia of a power system is insufficient, wind power plants’ participation in the inertial response should be required. A trendy solution for the frequency stability improvement in low inertia systems is based on utilizing so-called “synthetic” or “virtual” inertia from modern VSWG. This paper presents a control scheme for the virtual inertia response of wind power plants based on the center of inertia (COI) frequency of a control area. The PSS/E user written wind inertial controller based on COI frequency is developed using FORTRAN. The efficiency of the controller is tested and applied to the real interconnected power system of Southeast Europe. The performed simulations show certain conceptual advantages of the proposed controller in comparison to traditional schemes that use the local frequency to trigger the wind inertial response. The frequency response metrics, COI frequency calculation and graphical plots are obtained using Python.


Sign in / Sign up

Export Citation Format

Share Document