soc estimation
Recently Published Documents


TOTAL DOCUMENTS

610
(FIVE YEARS 293)

H-INDEX

29
(FIVE YEARS 6)

Author(s):  
Chi Nguyen Van ◽  
Thuy Nguyen Vinh

This paper proposes a method to estimate state of charge (SoC) for Lithium-ion battery pack (LIB) with 𝑁 series-connected cells. The cell’s model is represented by a second-order equivalent circuit model taking into account the measurement disturbances and the current sensor bias. By using two sigma point Kalman filters (SPKF), the SoC of cells in the pack is calculated by the sum of the pack’s average SoC estimated by the first SPKF and SoC differences estimated by the second SPKF. The advantage of this method is the SoC estimation algorithm performed only two times instead of 𝑁 times in each sampling time interval, so the computational burden is reduced. The test of the proposed SoC estimation algorithm for 7 samsung ICR18650 Lithium-ion battery cells connected in series is implemented in the continuous charge and discharge scenario in one hour time. The estimated SoCs of the cells in the pack are quite accurate, the 3-sigma criterion of estimated SoC error distributions is 0.5%.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 260
Author(s):  
Mahendiran T. Vellingiri ◽  
Ibrahim M. Mehedi ◽  
Thangam Palaniswamy

In recent years, alternative engine technologies are necessary to resolve the problems related to conventional vehicles. Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are effective solutions to decarbonize the transportation sector. It also becomes important to shift from traditional houses to smart houses and from classical vehicles to EVs or HEVs. It is needed to combine renewable energy sources (RESs) such as solar photovoltaics, wind energy systems, and various forms of bio-energies. Among various HEV technologies, an effective battery management system (BMS) still remains a crucial issue that is majorly used for indicating the battery state of charge (SOC). Since over-charging and over-discharging result in inevitable impairment to the batteries, accurate SOC estimation desires to be presented by the BMS. Although several SOC estimation techniques exist to regulate the SOC of the battery cell, it is needed to improvise the SOC estimation performance on HEVs. In this view, this paper focuses on the design of a novel deep learning (DL) with SOC estimation model for secure renewable energy management (DLSOC-REM) technique for HEVs. The presented model employs a hybrid convolution neural network and long short-term memory (HCNN-LSTM) model for the accurate estimation of SOC. In order to improve the SOC estimation outcomes of the HCNN-LSTM model, the barnacles mating optimizer (BMO) is applied for the hyperpower tuning process. The utilization of the HCNN-LSTM model makes the modeling process easier and offers a precise depiction of the input–output relationship of the battery model. The design of BMO based HCNN-LSTM model for SOC estimation shows the novelty of the work. An extensive experimental analysis highlighted the supremacy of the proposed model over other existing methods in terms of different aspects.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Chang-Qing Du ◽  
Jian-Bo Shao ◽  
Dong-Mei Wu ◽  
Zhong Ren ◽  
Zhong-Yi Wu ◽  
...  

The accurate estimation of the state of charge (SOC) and state of health (SOH) is of great significance to energy management and safety in electric vehicles. To achieve a good trade-off between real-time capability and estimation accuracy, a collaborative estimation algorithm for SOC and SOH is presented based on the Thevenin equivalent circuit model, which combines the recursive least squares method with a forgetting factor and the extended Kalman filter. First, the parameter identification accuracy is studied under a dynamic stress test (DST) and the federal urban driving schedule (FUDS) test at different ambient temperatures (0 °C, 25 °C, and 45 °C). Secondly, the FUDS test is used to verify the SOC estimation accuracy. Thirdly, two batteries with different aging degrees are used to validate the proposed SOH estimation algorithm. Subsequently, the accuracy of the SOC estimation algorithm is studied, considering the influence of updating the SOH. The proposed SOC estimation algorithm can achieve good performance at different ambient temperatures (0 °C, 25 °C, and 45 °C), with a maximum error of less than 2.3%. The maximum error for the SOH is less than 4.3% for two aged batteries at 25 °C, and it can be reduced to 1.4% after optimization. Furthermore, calibrating the capacity as the SOH changes can effectively improve the SOC estimation accuracy over the whole battery life.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 151
Author(s):  
Bo Huang ◽  
Changhe Liu ◽  
Minghui Hu ◽  
Lan Li ◽  
Guoqing Jin ◽  
...  

Temperature has an important effect on the battery model. A dual-polarization equivalent circuit model considering temperature is established to quantify the effect of temperature, and the initial parameters of the model are identified through experiments. To solve the defect of preset noise, the H-infinity filter algorithm is used to replace the traditional extended Kalman filter algorithm, without assuming that the process noise and measurement noise obey Gaussian distribution. To eliminate the influence of battery aging on SOC estimation, and considering the different time-varying characteristics of the battery states and parameters, the dual time scale double H-infinity filter is used to jointly estimate the revised SOC and available capacity. The simulation results at two temperatures show that, compared with the single time scale, the double time scale double H-infinity filter reduces the simulation time by nearly 90% under the premise that the accuracy is almost unchanged, which proves that the proposed joint estimation algorithm has the dual advantages of high precision and high efficiency.


Agro-Science ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 114-116
Author(s):  
S. Idris ◽  
A. Rilwan ◽  
S.A. Abubakar ◽  
M. Adamu ◽  
Y. Sadiq ◽  
...  

Soil testing is key to soil fertility management as it serves as a fertilizer application guide to farmers, scientists and consultants. It gives information on soil nutrient status and its supplying capacity. Laboratory (LB) procedures have been the most reliable approach for soil nutrients analyses. However, it is costly and nonpoint. Thus, the use of in–situ testing kit emerges and becomes prominent. Notwithstanding, applicability of soil testing kit must be validated by laboratory test. This work aimed to examine the reliability/suitability of Soil Testing Kit® Transchem (SK) in determining selected soil nutrients in Sahel Savannah, Nigeria. Twentyfive replicate soil samples were collected from 12°47’86’’-12°20’96’’N and 4°38’37’’-4°188’02’’E, Kebbi State Nigeria and used to test soil pH, N, P, K and soil organic carbon (SOC) by SK and LB. The SK uses colour chart and comparator for rating nutrients status qualitatively into; low, medium and high and up to very high for P. The LB results were transformed to qualitative data by corresponding the values with soil rating standardinto low, medium and high. To perform statistics, weighting was done by assigning weight load to each category; low = 1, medium = 2 and high = 3. The two methods were compared using t-test, regression and descriptive analyses. Results showed non-significant difference between the two methods for soil contents of N, P and K. However, SK poorly estimated soil pH and SOC. Correlation and regression coefficients (r = 0.915 and R2 = 0.838, respectively) indicated reliability of the SK. It is concluded that SK can be reliably used for N, P, and K but not soil pH and SOC estimation for soils in Sahel savannah of Nigeria.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Sumukh Surya ◽  
Cifha Crecil Saldanha ◽  
Sheldon Williamson

The main source of power in Electric Vehicles (EVs) is derived from batteries. An efficient cell model is extremely important for the development of complex algorithms like core temperature estimation, State of Health (SOH) estimation and State of Charge (SOC) estimation. In this paper, a new methodology for improving the SOC estimation using Equivalent Cell Model (ECM) approach is proposed. The modeling and simulations were performed using MATLAB/Simulink software. In this regard, a Li polymer cell was modeled as a single Resistor-Capacitor (RC) pair (R0, R1 and C1) model using PowerTrain blockset in MATLAB/Simulink software. To validate the developed model, a NASA dataset was used as the reference dataset. The cell model was tuned against the NASA dataset for different currents in such a way that the error in the terminal voltages (difference in terminal voltage between the dataset and the ECM) is <±0.2 V. The mean error and the standard deviation of the error were 0.0529 and 0.0310 respectively. This process was performed by tuning the cell parameters. It was found that the cell parameters were independent of the nominal capacity of the cell. The cell parameters of Li polymer and the Li ion cells (NASA dataset) were found be almost identical. These parameters showed dependence on SOC and temperature. The major challenge in a battery management system is the parameter estimation and prediction of SOC, this is because the degradation of battery is highly nonlinear in nature. This paper presents the parameter estimation and prediction of state of charge of Li ion batteries by implementing different machine learning techniques. The selection of the best suited algorithm is finalized through the performance indices mainly by evaluating the values of R- Squared. The parameters were trained using various Machine Leaning (ML) techniques for regression data analysis using Simulink. A study on Support Vector Machine (SVM) technique was carried out for the simulated and tuned data. It is concluded that the SVM algorithm was best suited. A detailed analysis on the errors associated with the algorithms was also carried out. Later, these parameters were trained using various Machine Leaning (ML) techniques for regression data analysis using Simulink. A study on SVM technique was carried out for the simulated and tuned data. It is concluded that the SVM algorithm was best suited. A detailed analysis on the errors associated with the algorithms was also carried out.


2021 ◽  
Vol 11 (24) ◽  
pp. 11797
Author(s):  
Dongdong Ge ◽  
Zhendong Zhang ◽  
Xiangdong Kong ◽  
Zhiping Wan

The accurate state of charge (SoC) online estimation for lithium-ion batteries is a primary concern for predicting the remaining range in electric vehicles. The Sigma points Kalman Filter is an emerging SoC filtering technology. Firstly, the charge and discharge tests of the battery were carried out using the interval static method to obtain the accurate calibration of the SoC-OCV (open circuit voltage) relationship curve. Secondly, the recursive least squares method (RLS) was combined with the dynamic stress test (DST) to identify the parameters of the second-order equivalent circuit model (ECM) and establish a non-linear state-space model of the lithium-ion battery. Thirdly, based on proportional correction sampling and symmetric sampling Sigma points, an SoC estimation method combining unscented transformation and Stirling interpolation center difference was designed. Finally, a semi-physical simulation platform was built. The Federal Urban Driving Schedule and US06 Highway Driving Schedule operating conditions were used to verify the effectiveness of the proposed estimation method in the presence of initial SoC errors and compare with the EKF (extended Kalman filter), UKF (unscented Kalman filter) and CDKF (central difference Kalman filter) algorithms. The results showed that the new algorithm could ensure an SoC error within 2% under the two working conditions and quickly converge to the reference value when the initial SoC value was inaccurate, effectively improving the initial error correction ability.


Author(s):  
Zaini Zaini ◽  
Dwi Mutiara Harfina ◽  
Agung P Iswar

Measurement of electric charge on the battery in real-time cannot be separated from external noise and disturbances such as temperature and interference. An optimal State of Charge (SoC) estimator model is needed to make the estimation more accurate. To obtain the model, the battery was tested under room temperature conditions and at a temperature of 40oC to obtain a second-order RC model for the Li-Ion battery used. Based on the test data obtained, the data will be tested first using the Kalman Filter method to get an estimate of the State of Charge (SoC). Tests were carried out using MATLAB software. After the method was tested, the online SoC Estimator design began using the Raspberry Pi Single Board Computer (SBC). After that, the estimator will be tested first using data from offline measurements and then used in real-time (online) SoC estimation measurements. The Voc before the battery discharge test was 13.16 V and after the test, the measured Voc was 11.58 V. During the discharge the Voc was reduced by 1.58 V. While the discharge data from the battery manufacturer showed the reduced Voc during the discharge was 1.2V.


Sign in / Sign up

Export Citation Format

Share Document