scholarly journals Consensus Control for Reactive Power Sharing Using an Adaptive Virtual Impedance Approach

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2026 ◽  
Author(s):  
Ahmed S. Alsafran ◽  
Malcolm W. Daniels

Reactive power sharing among distributed generators (DGs) in islanded microgrids (MGs) presents control challenges, particularly in the mismatched feeder line condition. Improved droop control methods independently struggle to resolve this issue and centralized secondary control methods exhibit a high risk of collapse for the entire MG system under any failure in the central control. Distributed secondary control methods have been recently proposed to mitigate the reactive power error evident in the presence of mismatched feeder lines. This paper details a mathematical model of an adaptive virtual impedance control that is based on both leaderless and leader-followers consensus controls with a novel triangle mesh communication topology to ensure accurate active and reactive power sharing. The approach balances an enhanced rate of convergence with the anticipated implementation cost. A MATLAB/Simulink model with six DG units validates the proposed control performance under three different communication structures: namely, ring, complete, and triangle mesh topologies. The results suggest that leaderless consensus control is a reliable option with large DG systems, while the leader-followers consensus control is suitable for the small systems. The triangle mesh communication topology provides a compromise approach balancing the rate of convergence and the expected cost. The extensibility and scalability are advantages of this topology over the alternate ring and complete topologies.

Author(s):  
Harini M and Dr.S.Chitra

The concept of microgrid has been developed to realize flexible coordination control among Distributed Generation (DG) units, improve the power quality supplied to customers. The problem such as the power quality and the system stability due to the intermittency of the renewable energy sources and the fluctuating load profile. The reactive power sharing done by droop control method but reactive power is not accurately shared if there is a local load at each DG. In this paper adaptive virtual impedance control is used to improve the power control stability and sharing performance of real and reactive power sharing is compared by using MATLAB/Simulink environment. Simulation results shows the effectiveness of the proposed method is achieving load reactive power sharing and the voltage restoration is settles in less time.


Sign in / Sign up

Export Citation Format

Share Document