scholarly journals Optimization of a Small Wind Turbine for a Rural Area: A Case Study of Deniliquin, New South Wales, Australia

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2292 ◽  
Author(s):  
Nour Khlaifat ◽  
Ali Altaee ◽  
John Zhou ◽  
Yuhan Huang ◽  
Ali Braytee

The performance of a wind turbine is affected by wind conditions and blade shape. This study aimed to optimize the performance of a 20 kW horizontal-axis wind turbine (HAWT) under local wind conditions at Deniliquin, New South Wales, Australia. Ansys Fluent (version 18.2, Canonsburg, PA, USA) was used to investigate the aerodynamic performance of the HAWT. The effects of four Reynolds-averaged Navier–Stokes turbulence models on predicting the flows under separation condition were examined. The transition SST model had the best agreement with the NREL CER data. Then, the aerodynamic shape of the rotor was optimized to maximize the annual energy production (AEP) in the Deniliquin region. Statistical wind analysis was applied to define the Weibull function and scale parameters which were 2.096 and 5.042 m/s, respectively. The HARP_Opt (National Renewable Energy Laboratory, Golden, CO, USA) was enhanced with design variables concerning the shape of the blade, rated rotational speed, and pitch angle. The pitch angle remained at 0° while the rising wind speed improved rotor speed to 148.4482 rpm at rated speed. This optimization improved the AEP rate by 9.068% when compared to the original NREL design.

2018 ◽  
Vol 45 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Jelena Svorcan ◽  
Ognjen Pekovic ◽  
Toni Ivanov

Although much employed, wind energy systems still present an open, contemporary topic of many research studies. Special attention is given to precise aerodynamic modeling performed in the beginning since overall wind turbine performances directly depend on blade aerodynamic performances. Several models different in complexity and computational requirements are still widely used. Most common numerical approaches include: i) momentum balance models, ii) potential flow methods and iii) full computational fluid dynamics solutions. Short explanations, reviews and comparison of the existing computational concepts are presented in the paper. Simpler models are described and implemented while numerous numerical investigations of isolated horizontal-axis wind turbine rotor consisting of three blades have also been performed in ANSYS FLUENT 16.2. Flow field is modeled by Reynolds Averaged Navier-Stokes (RANS) equations closed by two different turbulence models. Results including global parameters such as thrust and power coefficients as well as local distributions along the blade obtained by different models are compared to available experimental data. Presented results include fluid flow visualizations in the form of velocity contours, sectional pressure distributions and values of power and thrust force coefficients for a range of operational regimes. Although obtained numerical results vary in accuracy, all presented numerical settings seem to slightly under- or over-estimate the global wind turbine parameters (power and thrust force coefficients). Turbulence can greatly affect the wind turbine aerodynamics and should be modeled with care.


Sign in / Sign up

Export Citation Format

Share Document