scholarly journals A Proposal for an MPPT Algorithm Based on the Fluctuations of the PV Output Power, Output Voltage, and Control Duty Cycle for Improving the Performance of PV Systems in Microgrid

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4326
Author(s):  
Nguyen Van Tan ◽  
Nguyen Binh Nam ◽  
Nguyen Huu Hieu ◽  
Le Kim Hung ◽  
Minh Quan Duong ◽  
...  

In microgrids, distributed generators that cannot be dispatched, such as a photovoltaic system, need to control their output power at the maximum power point. The fluctuation of their output power should be minimized with the support of the maximum power point tracking algorithm under the variation of ambient conditions. In this paper, a new maximum power point tracking method based on the parameters of power deviation (ΔPPV), voltage difference (ΔVPV), and duty cycle change (ΔD) is proposed for photovoltaic systems. The presented algorithm achieves the following good results: (i) when the solar radiance is fixed, the output power is stable around the maximum power point; (ii) when the solar radiance is rapidly changing, the generated power is always in the vicinity of maximum power points; (iii) the effectiveness of energy conversion is comparable to that of intelligent algorithms. The proposed algorithm is presented and compared with traditional and intelligent maximum power point tracking algorithms on the simulation model by MATLAB/Simulink under different radiation scenarios to prove the effectiveness of the proposed method.

2018 ◽  
Vol 7 (3) ◽  
pp. 94-111 ◽  
Author(s):  
Hanane Yatimi ◽  
Elhassan Aroudam

In this article, on the basis of studying the mathematical model of a PV system, a maximum power point tracking (MPPT) technique with variable weather conditions is proposed. The main objective is to make a full utilization of the output power of a PV solar cell operating at the maximum power point (MPP). To achieve this goal, the incremental conductance (IC) MPPT technique is applied to an off-grid PV system under varying climatic conditions, in particular, solar irradiance and temperature that are locally measured in Northern Morocco. The output power behavior and the performance of the system using this technique have been analyzed through computer simulations to illustrate the validity of the designed method under the effect of real working conditions.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Hafsa Abouadane ◽  
Abderrahim Fakkar ◽  
Benyounes Oukarfi

The photovoltaic panel is characterized by a unique point called the maximum power point (MPP) where the panel produces its maximum power. However, this point is highly influenced by the weather conditions and the fluctuation of load which drop the efficiency of the photovoltaic system. Therefore, the insertion of the maximum power point tracking (MPPT) is compulsory to track the maximum power of the panel. The approach adopted in this paper is based on combining the strengths of two maximum power point tracking techniques. As a result, an efficient maximum power point tracking method is obtained. It leads to an accurate determination of the MPP during different situations of climatic conditions and load. To validate the effectiveness of the proposed MPPT method, it has been simulated in matlab/simulink under different conditions.


Sign in / Sign up

Export Citation Format

Share Document