scholarly journals Optimal Allocation of Large-Capacity Distributed Generation with the Volt/Var Control Capability Using Particle Swarm Optimization

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3112
Author(s):  
Donghyeon Lee ◽  
Seungwan Son ◽  
Insu Kim

Widespread interest in environmental issues is growing. Many studies have examined the effect of distributed generation (DG) from renewable energy resources on the electric power grid. For example, various studies efficiently connect growing DG to the current electric power grid. Accordingly, the objective of this study is to present an algorithm that determines DG location and capacity. For this purpose, this study combines particle swarm optimization (PSO) and the Volt/Var control (VVC) of DG while regulating the voltage magnitude within the allowable variation (e.g., ±5%). For practical optimization, the PSO algorithm is enhanced by applying load profile data (e.g., 24-h data). The objective function (OF) in the proposed PSO method considers voltage variations, line losses, and economic aspects of deploying large-capacity DG (e.g., installation costs) to transmission networks. The case studies validate the proposed method (i.e., optimal allocation of DG with the capability of VVC with PSO) by applying the proposed OF to the PSO that finds the optimal DG capacity and location in various scenarios (e.g., the IEEE 14- and 30-bus test feeders). This study then uses VVC to compare the voltage profile, loss, and installation cost improved by DG to a grid without DG.

2014 ◽  
Vol 1070-1072 ◽  
pp. 657-665
Author(s):  
Peng Cheng Li ◽  
Zhong Xiao Cong ◽  
Jia Xiang Ou ◽  
Zhi Wei Peng

Multi-objective optimization model on sitting and sizing of Distributed Generation (DG) was proposed in this paper, and it was based on the comprehensive consideration of total system network loss and total deviation of node voltage, aiming at the optimization of DG’s access, the simulation tests were carried out on the 13 bus test system using Particle Swarm Optimization (PSO) algorithm that belonged to swarm intelligence algorithm, receiving the improved network loss and node voltage as the evaluation index, the mutation operator was introduced into the basic PSO algorithm, which improved the possibility to find a more optimal value ,the results showed that IPSO algorithm had strong global searching ability and rapid convergence speed for optimal allocation of Distributed Generation in the distribution network, and it created a new idea for further Distributed Generation allocation.


Author(s):  
Jijun Liu ◽  
Yuxin Bai ◽  
Yingfeng He

This work aims at solving complex problems of the optimal scheduling model of active distribution network, teaching strategies are proposed to improve the global search ability of particle swarm optimization. Moreover, based on the improved Euclidean distance cyclic crowding sorting strategy, the convergence ability of Li Zhiquan algorithm is improved. With the cost and voltage indexes of the energy storage system of the distribution network as the goal, different optimized configuration schemes are constructed, and the improved HTL-MOPSO algorithm is adopted to find the solution. The results show that compared with the traditional TV-MOPSO algorithm, the proposed algorithm has better convergence performance and optimization ability, and has a lower economic cost. In short, the algorithm proposed can provide a basis for improving the optimization of active distribution network scheduling strategies.


Sign in / Sign up

Export Citation Format

Share Document