scholarly journals Review of Energy Storage and Energy Management System Control Strategies in Microgrids

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4929
Author(s):  
Gaurav Chaudhary ◽  
Jacob J. Lamb ◽  
Odne S. Burheim ◽  
Bjørn Austbø

A microgrid (MG) is a discrete energy system consisting of an interconnection of distributed energy sources and loads capable of operating in parallel with or independently from the main power grid. The microgrid concept integrated with renewable energy generation and energy storage systems has gained significant interest recently, triggered by increasing demand for clean, efficient, secure, reliable and sustainable heat and electricity. However, the concept of efficient integration of energy storage systems faces many challenges (e.g., charging, discharging, safety, size, cost, reliability and overall management). Additionally, proper implementation and justification of these technologies in MGs cannot be done without energy management systems, which control various aspects of power management and operation of energy storage systems in microgrids. This review discusses different energy storage technologies that can have high penetration and integration in microgrids. Moreover, their working operations and characteristics are discussed. An overview of the controls of energy management systems for microgrids with distributed energy storage systems is also included in the scope of this review.

2013 ◽  
Vol 8-9 ◽  
pp. 185-194 ◽  
Author(s):  
Bogdan Tomoiaga ◽  
Mircea D. Chindris ◽  
Andreas Sumper ◽  
Mousa Marzband

The concept of microgrid was first introduced in 2001 as a solution for reliable integration of distributed generation and for harnessing their multiple advantages. Specific control and energy management systems must be designed for the microgrid operation in order to ensure reliable, secure and economical operation; either in grid-connected or stand-alone operating mode. The problem of energy management in microgrids consists of finding the optimal or near optimal unit commitment and dispatch of the available sources and energy storage systems so that certain selected criteria are achieved. In most cases, energy management problem do not satisfy the Bellman's principle of optimality because of the energy storage systems. Consequently, in this paper, an original fast heuristic algorithm for the energy management on stand-alone microgrids, which avoids wastage of the existing renewable potential at each time interval, is presented. A typical test microgrid has been analysed in order to demonstrate the accuracy and the promptness of the proposed algorithm. The obtained cost of energy is low (the quality of the solution is high), the primary adjustment reserve is correspondingly assured by the energy storage system and the execution runtime is very short (a fast algorithm). Furthermore, the proposed algorithm can be used for real-time energy management systems.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 15
Author(s):  
Viviane T. Nascimento ◽  
Patrícia Albuquerque Gimenes ◽  
Miguel E. Morales Udaeta ◽  
André L. Veiga Gimenes

The objective of this work is to develop a framework related to energy storage systems implementation. The work focuses on a Brazilian scenario and applies information regarding demographic changes, economic, governmental and energy resources studies to establish the opportunities and barriers for a battery deployment in the country. This information is classified into organization, technology, and standards fronts, enabling to schedule the human resources and deal with possible gaps. Besides this, the framework organizes the information to enable a constant review of work fronts and activities, as the implementation scenario changes, and new stakeholders are added. A use case regarding an implementation of a multisource energy system composed by different sources and a battery allows to verify the proposed framework viability. As a result, it is expected that the framework enables medium-sized energy consumers to implement a similar infrastructure, reducing risks and gaps and maximizing the opportunities regarding a battery deployment.


2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


Author(s):  
Angelos I. Nousdilis ◽  
Georgios C. Kryonidis ◽  
Eleftherios O. Kontis ◽  
Georgios Christos Christoforidis ◽  
Grigoris K. Papagiannis

Sign in / Sign up

Export Citation Format

Share Document