scholarly journals Novel Post-Glacial Haplotype Evolution in Birch—A Case for Conserving Local Adaptation

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1246
Author(s):  
Samuel Belton ◽  
Philippe Cubry ◽  
Erica Fox ◽  
Colin T. Kelleher

Despite constituting the western-most edge of the population distributions for several native European plants, Ireland has largely been left out of key Europe-wide phylogeographic studies. This is true for birch (Betula pubescens Ehrh. and Betula pendula Roth), for which the genetic diversity has yet to be mapped for Ireland. Here we used eight cpDNA markers (two Restriction Fragment Length Polymorphism (RFLP) and six Simple Sequence Repeat (SSR)) to map the genetic diversity of B. pubescens, B. pendula, and putative hybrid individuals sampled from 19 populations spread cross most of the island of Ireland. Within Ireland, 11 distinct haplotypes were detected, the most common of which (H1) was also detected in England, Scotland, France, and Norway. A moderate level of population structuring (GST = 0.282) was found across Ireland and the genetic diversity of its northern populations was twice that of its southern populations. This indicates that, unlike other native Irish trees, such as oak and alder, post-glacial recolonization by birch did not begin in the south (i.e., from Iberia). Rather, and in agreement with palynological data, birch most likely migrated in from eastern populations in Britain. Finally, we highlight Irish populations with comparatively unique genetic structure which may be included as part of European genetic conservation networks.

Author(s):  
Samuel Belton ◽  
Philippe Cubry ◽  
Erica Fox ◽  
Colin T. Kelleher

Despite constituting the western-most edge of the population distributions for several native European flora, Ireland has largely been left out of key Europe-wide phylogeographic studies. This is true for birch (Betula pubescens Ehrh. and Betula pendula Roth.), for which the genetic diversity has yet to be mapped for Ireland. Here, we used eight cpDNA (two RFLP and six SSR) markers to map the genetic diversity of B. pubescens, B. pendula and putative hybrid individuals sampled from 19 populations spread cross most of the island of Ireland. Within Ireland, 11 distinct haplotypes were detected, the most common of which (H1) was also detected in England, Scotland, France and Norway. A moderate level of population structuring (GST = 0.282) was found across Ireland and the genetic diversity of its northern populations was twice that of its southern populations. This indicates that, unlike other native Irish trees, such as oak and alder, post-glacial recolonisation by birch did not begin in the south (i.e., from Iberia). Rather, and in agreement with palynological data, birch most likely migrated in from eastern populations in Britain. Finally, we highlight Irish populations with comparatively unique genetic structure which may be included as part of European genetic conservation networks.


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Eline van Zijll de Jong ◽  
Kathryn M Guthridge ◽  
German C Spangenberg ◽  
John W Forster

Fungal endophytes of the genus Neotyphodium are common in temperate pasture grass species and confer both beneficial and deleterious agronomic characteristics to their hosts. The aim of this study was to develop molecular markers based on simple sequence repeat (SSR) loci for the identification and assessment of genetic diversity among Neotyphodium endophytes in grasses. Expressed sequence tags (ESTs) from both Neptyphodium coenophialum and Neotyphodium lolii were examined, and unique SSR loci were identified in 9.7% of the N. coenophialum sequences and 6.3% of the N. lolii sequences. A variety of SSRs were present, although perfect trinucleotide repeat arrays were the most common. Primers were designed to 50 SSR loci from N. coenophialum and 57 SSR loci from N. lolii and were evaluated using 20 Neotyphodium and Epichloë isolates. A high proportion of the N. coenophialum and N. lolii primers produced amplification products from the majority of isolates and most of these primers detected genetic variation. SSR markers from both N. coenophialum and N. lolii detected high levels of polymorphism between Neotyphodium and Epichloë species, and low levels of polymorphism within N. coenophialum and N. lolii. SSR markers may be used in appropriate combinations to discriminate between species. Comparison with amplified fragment length polymorphism (AFLP) data demonstrated that the SSR markers were informative for the assessment of genetic variation within and between endophyte species. These markers may be used to identify endophyte taxa and to evaluate intraspecific population diversity, which may be correlated with variation for endophyte-derived agronomic traits.Key words: Neotyphodium, simple sequence repeats, expressed sequence tags, amplified fragment length polymorphism, genetic diversity.


Genome ◽  
2005 ◽  
Vol 48 (3) ◽  
pp. 367-377 ◽  
Author(s):  
Hiroyoshi Iwata ◽  
Kenta Imon ◽  
Yoshihiko Tsumura ◽  
Ryo Ohsawa

We assessed the genetic diversity in Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers and investigated the relationships between the genetic diversity and agronomic traits. The average expected intracultivar hetero zygosity was 0.303 for AFLP and 0.819 for SSR. The differentiations among agroecotypes, among cultivars within an agroecotype, and among cultivars were small (0.002, 0.024, and 0.026 for SSR and 0.013, 0.013, and 0.026 for AFLP, respectively) but statistically significant from zero except for the SSR differentiation among agroecotypes. In principal coordinates analysis, cultivars within the same agroecotype tended to cluster, indicating that agroecotypes well reflected the genetic relationships among cultivars. In AFLP, the differentiation among the agroecotypes was more distinct than in SSR, and genetic distance showed a moderate correlation with the difference in quantitative traits, indicating that AFLP can resolve the relationships among cultivars with better resolution than SSR. By contrast, SSR may be more sensitive to demographic changes. Four of the five SSR markers showed a significant positive correlation (Kendall's τ = 0.382–0.607) between allelic richness and variation in flowering timing, indicating that cumulative bottleneck events have occurred during the population history, with a decline in the variation of photosensitivity of flowering.Key words: agroecotype, coefficient of gene differentiation, genetic distance, allelic richness, photosensitivity of flowering.


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
Huifang Cao ◽  
Qiang Lin ◽  
Peiwang Li ◽  
Jingzhen Chen ◽  
Changzhu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document