scholarly journals Mechanisms Underlying Activation of α1-Adrenergic Receptor-Induced Trafficking of AQP5 in Rat Parotid Acinar Cells under Isotonic or Hypotonic Conditions

2016 ◽  
Vol 17 (7) ◽  
pp. 1022 ◽  
Author(s):  
Aneta Bragiel ◽  
Di Wang ◽  
Tomasz Pieczonka ◽  
Masayuki Shono ◽  
Yasuko Ishikawa
2010 ◽  
Vol 31 (5) ◽  
pp. 293-299 ◽  
Author(s):  
Ming-Yu Guo ◽  
Keitaro Satoh ◽  
Bing Qi ◽  
Takanori Narita ◽  
Osamu Katsumata-Kato ◽  
...  

1985 ◽  
Vol 231 (2) ◽  
pp. 431-438 ◽  
Author(s):  
S R Grant ◽  
E E Kousvelari ◽  
D K Banerjee ◽  
B J Baum

beta-Adrenergic stimulation of rat parotid acinar cells markedly increases [3H]mannose incorporation into N-linked glycoproteins [Kousvelari, Grant, Banerjee, Newby & Baum (1984) Biochem. J. 222, 17-24]. More than 90% of this protein-bound [3H]mannose was preferentially incorporated into four secretory glycoproteins. The ratio of [3H]mannose/[14C]leucine present in these individual proteins was 1.7-4-fold greater with isoproterenol-treated cells than with untreated controls. In isoproterenol-stimulated cells, [3H]mannose incorporation into mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol was increased 2-3-fold over that observed in unstimulated cells. Similarly, formation of mannosylated oligosaccharide-PP-dolichol was increased approx. 4-fold in microsomes prepared from isoproterenol-treated cells. Also, turnover of oligosaccharide-PP-dolichol was significantly increased (5-fold) by β-adrenergic stimulation; the half-life for oligosaccharide-PP-dolichol decreased from 6 min in control cells to 1.2 min in isoproterenol-stimulated cells. By 15 min after isoproterenol addition to acinar cells, the specific radioactivity of parotid oligosaccharide moieties increased about 3-fold over the value observed in the absence of the agonist. Taken together, these results strongly suggest that elevation of N-linked protein glycosylation in rat parotid acinar cells after β-adrenoreceptor stimulation resulted from significant enhancement in the synthesis of mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol and the turnover of oligosaccharide-PP-dolichol.


1985 ◽  
Vol 225 (1) ◽  
pp. 263-266 ◽  
Author(s):  
D L Aub ◽  
J W Putney

Activation of muscarinic receptors in rat parotid cells results in breakdown of polyphosphoinositides liberating inositol phosphates, including inositol trisphosphate. Formation of inositol trisphosphate appears independent of agonist-induced Ca2+ mobilization, since neither formation nor degradation of inositol trisphosphate are appreciably altered in low-calcium media, and elevation of cytosolic Ca2+ with a calcium ionophore does not cause an increase in cellular inositol trisphosphate. Further, activation of substance P receptors and alpha 1-adrenoreceptors, but not beta-adrenoreceptors, increases inositol trisphosphate formation. The dose-response curve for methacholine activation of inositol trisphosphate formation more closely approximates the curve for receptor occupancy than for Ca2+-activated K+ release. These results are all consistent with the suggestion that inositol trisphosphate could function as a second messenger linking receptor occupation to cellular Ca2+ mobilization.


Sign in / Sign up

Export Citation Format

Share Document