scholarly journals Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells. Relationship to calcium signalling.

1988 ◽  
Vol 263 (21) ◽  
pp. 10314-10319
Author(s):  
A R Hughes ◽  
H Takemura ◽  
J W Putney
2015 ◽  
Vol 309 (7) ◽  
pp. C480-C490 ◽  
Author(s):  
Amira Moustafa ◽  
Yoshiaki Habara

In addition to nitric oxide (NO), hydrogen sulfide (H2S) is recognized as a crucial gaseous messenger that exerts many biological actions in various tissues. An attempt was made to assess the roles and underlying mechanisms of both gases in isolated rat parotid acinar cells. Ductal cells and some acinar cells were found to express NO and H2S synthases. Cevimeline, a muscarinic receptor agonist upregulated endothelial NO synthase in parotid tissue. NO and H2S donors increased the intracellular Ca2+ concentration ([Ca2+]i). This was not affected by inhibitors of phospholipase C and inositol 1,4,5-trisphosphate receptors, but was decreased by blockers of ryanodine receptors (RyRs), soluble guanylyl cyclase, and protein kinase G. The H2S donor evoked NO production, which was decreased by blockade of NO synthases or phosphoinositide 3-kinase or by hypotaurine, an H2S scavenger. The H2S donor-induced [Ca2+]i increase was diminished by a NO scavenger or the NO synthases blocker. These results suggest that NO and H2S play important roles in regulating [Ca2+]i via soluble guanylyl cyclase-cGMP-protein kinase G-RyRs, but not via inositol 1,4,5-trisphosphate receptors. The effect of H2S may be partially through NO produced via phosphoinositide 3-kinase-Akt-endothelial NO synthase. It was concluded that both gases regulate [Ca2+]i in a synergistic way, mainly via RyRs in rat parotid acinar cells.


2007 ◽  
Vol 307 (1-2) ◽  
pp. 193-207 ◽  
Author(s):  
Antonio Mata ◽  
Duarte Marques ◽  
María A. Martínez-Burgos ◽  
João Silveira ◽  
Joana Marques ◽  
...  

1998 ◽  
Vol 332 (3) ◽  
pp. 769-772 ◽  
Author(s):  
Akihiko TANIMURA ◽  
Yoshito MATSUMOTO ◽  
Yosuke TOJYO

In exocrine acinar cells, agonist stimulation results in a polarized Ca2+ signal, termed the ‘Ca2+ wave’, that propagates from the apical pole towards the basolateral region. We attempted to detect the inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ wave in saponin-permeabilized rat parotid acinar cells using a digital imaging system. The permeabilized acinar cells were labelled with the membrane-bound Ca2+ indicator Calcium Green C18 to detect changes in Ca2+ concentration adjacent to the membrane of intracellular organelles. Application of InsP3 was made by the photolysis of InsP3 P4(5)-1-(2-nitrophenyl)ethyl ester (caged InsP3) to expose simultaneously all regions of the permeabilized acinar cells to InsP3. The increase in fluorescence ratio following the photolysis of 0.5 µM caged InsP3 started at the apical region of the acinar cells within 0.1 s and spread towards the basolateral region, indicating that Ca2+ release from intracellular Ca2+ stores was initially evoked at the apical region. Pretreatment with thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pumps, failed to prevent the InsP3-induced Ca2+ wave, suggesting that the generation of the Ca2+ wave is not attributed to the polarized distribution of the Ca2+ pumps. The photolysis of a high concentration (10 µM) of caged InsP3 caused a homogeneous increase in the fluorescence ratio throughout the cells, indicating that all regions of intracellular Ca2+ stores similarly responded to the high concentration of InsP3. The present study is the first demonstration of the InsP3-induced Ca2+ wave in permeabilized exocrine acinar cells. The result provides fresh evidence that the apical region contains elements of intracellular Ca2+ stores particularly sensitive to InsP3 and that the Ca2+ wave results from a polarized distribution of InsP3-sensitive Ca2+ stores.


1998 ◽  
Vol 330 (2) ◽  
pp. 847-852 ◽  
Author(s):  
Peixin LIU ◽  
John SCOTT ◽  
Peter Matthew SMITH

Secretory vesicles from pancreatic acinar cells have recently been shown to release Ca2+ after stimulation with Ins(1,4,5)P3 [Gerasimenko, Gerasimenko, Belan and Petersen, (1996) Cell 84, 473-480]. These observations have been used in support of the hypothesis that Ca2+ release from secretory vesicles could be an important component of stimulus secretion coupling in exocrine acinar cells. In the rat, ligation of the parotid duct causes a reversible atrophy of the parotid gland. Most notably, after atrophy the acinar cells are reduced in size and no longer contain secretory vesicles [Liu, Smith, and Scott (1996) J. Dent. Res. 74, 900]. We have measured cytosolic free-Ca2+ concentration ([Ca2+]i) in single, acutely isolated, rat parotid acinar cells, and compared Ca2+ mobilization in response to acetylcholine (ACh) stimulation in cells obtained from control animals to that in cells lacking secretory vesicles obtained after atrophy of the parotid gland. Application of 50-5000 nM ACh to control cells gave rise to a typical, dose-dependent, biphasic increase in [Ca2+]i, of which the later, plateau, phase was acutely dependent on the extracellular Ca2+ concentration. An identical pattern of response was observed with cells obtained from atrophic glands. Low concentrations of ACh (10-100 nM) occasionally produced [Ca2+]i oscillations of a similar pattern in cells from both control and atrophic glands. We were able to show that Ca2+ rises first in the apical pole of the cell and the increase then spreads to the rest of the cell in cells from control glands but not in cells from atrophic glands. However, at present we are unable to determine whether this is due to the lack of secretory vesicles or whether the separation is too small to measure in the smaller acinar cells obtained from atrophic glands. We conclude therefore, that secretory vesicles make no significant contribution to overall Ca2+ mobilization in rat parotid acinar cells, nor are they required for oscillatory changes in [Ca2+]i to occur. However we are unable to eliminate completely any role for secretory vesicles in initiating Ca2+ mobilization at the apical pole of the cell.


1985 ◽  
Vol 231 (2) ◽  
pp. 431-438 ◽  
Author(s):  
S R Grant ◽  
E E Kousvelari ◽  
D K Banerjee ◽  
B J Baum

beta-Adrenergic stimulation of rat parotid acinar cells markedly increases [3H]mannose incorporation into N-linked glycoproteins [Kousvelari, Grant, Banerjee, Newby & Baum (1984) Biochem. J. 222, 17-24]. More than 90% of this protein-bound [3H]mannose was preferentially incorporated into four secretory glycoproteins. The ratio of [3H]mannose/[14C]leucine present in these individual proteins was 1.7-4-fold greater with isoproterenol-treated cells than with untreated controls. In isoproterenol-stimulated cells, [3H]mannose incorporation into mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol was increased 2-3-fold over that observed in unstimulated cells. Similarly, formation of mannosylated oligosaccharide-PP-dolichol was increased approx. 4-fold in microsomes prepared from isoproterenol-treated cells. Also, turnover of oligosaccharide-PP-dolichol was significantly increased (5-fold) by β-adrenergic stimulation; the half-life for oligosaccharide-PP-dolichol decreased from 6 min in control cells to 1.2 min in isoproterenol-stimulated cells. By 15 min after isoproterenol addition to acinar cells, the specific radioactivity of parotid oligosaccharide moieties increased about 3-fold over the value observed in the absence of the agonist. Taken together, these results strongly suggest that elevation of N-linked protein glycosylation in rat parotid acinar cells after β-adrenoreceptor stimulation resulted from significant enhancement in the synthesis of mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol and the turnover of oligosaccharide-PP-dolichol.


Sign in / Sign up

Export Citation Format

Share Document