calcium ionophore
Recently Published Documents


TOTAL DOCUMENTS

1702
(FIVE YEARS 70)

H-INDEX

87
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Li-av Segev-Zarko ◽  
Peter D. Dahlberg ◽  
Stella Y. Sun ◽  
Daniël M. Pelt ◽  
James A. Sethian ◽  
...  

Host cell invasion by intracellular, eukaryotic parasites, like the many important species within the phylum Apicomplexa, is a remarkable and active process involving the coordinated action of many apical organelles and other structures. To date, capturing how these various structures interact during invasion has been difficult to observe in detail. Here, we used cryogenic electron tomography to generate images of the apical complex of Toxoplasma gondii tachyzoites under conditions that mimic resting parasites and those primed to invade through addition of a calcium ionophore. Using AI-based image-processing we were able to annotate 48 tomograms to identify and extract densities of the relevant subcellular organelles and accurately analyze features in 3D. We describe an interaction between an anteriorly located apical vesicle and a rhoptry tip that occurs only in the ionophore-stimulated parasites and that is associated with dramatic changes in the vesicle's shape in what appears to be a stalled fusion event. We also present information to support the presumption that this vesicle originates from the well-described vesicles that parallel the intraconoidal microtubules and that the latter two structures are linked by a novel tether. Lastly, we show that a previously described rosette is found associated with more than just the anterior-most apical vesicle, indicating that multiple such vesicles are primed to enable rhoptry secretion.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 397
Author(s):  
Alexander Hedbrant ◽  
Ingrid Persson ◽  
Ann Erlandsson ◽  
Jonny Wijkander

The formation of prostaglandin E2 (PGE2) is associated with adverse inflammatory effects. However, long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) comes with risk of severe side effects. Therefore, alternative ways to inhibit PGE2 are warranted. We have investigated the effects of tea extracts and the polyphenols epigallocatechin gallate (EGCG) and quercetin on PGE2 formation, determined by immunoassay, and protein expression, determined by immunoblotting, of cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in human monocytes. Green and black tea extracts, and with a lower potency, Rooibos tea extract, inhibited lipopolysaccharide (LPS) and calcium ionophore-induced PGE2 formation. In addition, all tea extracts inhibited the LPS-induced expression of mPGES-1, and the green and black tea extracts also inhibited, to a lesser extent, COX-2 expression. The tea extracts only marginally reduced cPLA2 expression and had no effect on COX-1 expression. EGCG, present in green and black tea, and quercetin, present in all three teas, also inhibited PGE2 formation and expression of mPGES-1, COX-2 and cPLA2. Cell-based and cell-free assays were also performed to evaluate direct effects on the enzymatic activity of COX and PGE synthases. Mainly, the cell-free assay demonstrated partial inhibition by the tea extracts and polyphenols. However, the inhibition required higher doses compared to the effects demonstrated on protein expression. In conclusion, green and black tea, and to a lesser extent Rooibos tea, are potent inhibitors of PGE2 formation in human monocytes, and mediate their effects by inhibiting the expression of the enzymes responsible for PGE2 formation, especially mPGES-1.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
Nhung Quynh Do ◽  
Shengdao Zheng ◽  
Sarang Oh ◽  
Quynh T. N. Nguyen ◽  
Minzhe Fang ◽  
...  

Although Myrciaria dubia (camu-camu) has been shown to exert anti-oxidant and anti-inflammatory effects in both in vitro and in vivo studies, its use in allergic responses has not been elucidated. In the present study, the anti-allergic effect of 70% ethanol camu-camu fruit extract was tested on calcium ionophore (A23187)-induced allergies in RBL-2H3 cells. The RBL-2H3 cells were induced with 100 nM A23187 for 6 h, followed by a 1 h camu-camu fruit extract treatment. A23187 sanitization exacerbated mast cell degranulation; however, camu-camu fruit extract decreased the release of histamine and β-hexosaminidase, which are considered as key biomarkers in cell degranulation. Camu-camu fruit extract inhibited cell exocytosis by regulating the calcium/nuclear factor of activated T cell (NFAT) signaling. By downregulating the activation of mitogen-activated protein kinase (MAPK) signaling, camu-camu fruit extract hindered the activation of both histamine H1 and H4 receptors and inhibited histidine decarboxylase (HDC) expression by mediating its transcription factors KLF4/SP1 and GATA2/MITF. In A23187-induced ROS overproduction, camu-camu fruit extract activated nuclear factor erythroid-2-related factor 2 (Nrf2) to protect mast cells against A23187-induced oxidative stress. These findings indicate that camu-camu fruit extract can be developed to act as a mast cell stabilizer and an anti-histamine. This work also “opens the door” to new investigations using natural products to achieve breakthroughs in allergic disorder treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shivani Kansal ◽  
Vaishali Panwar ◽  
Roseeta Devi Mutum ◽  
Saurabh Raghuvanshi

MicroRNAs (miRNAs) are critical components of the multidimensional regulatory networks in eukaryotic systems. Given their diverse spectrum of function, it is apparent that the transcription, processing, and activity of the miRNAs themselves, is very dynamically regulated. One of the most important and universally implicated signaling molecules is [Ca2+]cyt. It is known to regulate a plethora of developmental and metabolic processes in both plants and animals; however, its impact on the regulation of miRNA expression is relatively less explored. The current study employed a combination of internal and external calcium channel inhibitors to establishing that [Ca2+]cyt signatures actively regulate miRNA expression in rice. Involvement of [Ca2+]cyt in the regulation of miRNA expression was further confirmed by treatment with calcimycin, the calcium ionophore. Modulation of the cytosolic calcium levels was also found to regulate the drought-responsive expression as well as ABA-mediated response of miRNA genes in rice seedlings. The study further establishes the role of calmodulins and Calmodulin-binding Transcription Activators (CAMTAs) as important components of the signal transduction schema that regulates miRNA expression. Yeast one-hybrid assay established that OsCAMTA4 & 6 are involved in the transcriptional regulation of miR156a and miR167h. Thus, the study was able to establish that [Ca2+]cyt is actively involved in regulating the expression of miRNA genes both under control and stress conditions.


2021 ◽  
Vol 11 (20) ◽  
pp. 9425
Author(s):  
Po-Tsang Lee ◽  
Han-Yang Yeh ◽  
Wei-Qing-Chloe Lung ◽  
Jing Huang ◽  
Yi-Jung Chen ◽  
...  

R-phycoerythrin (R-PE), a pigment complex found in red algae, was extracted and purified from a newly identified red alga, Colaconema formosanum, and its bioactivities were examined. It was revealed that R-PE treatment resulted in high cell viability (>70%) to the mammalian cell lines NIH-3T3, RBL-2H3, RAW264.7, and Hs68, and had no effect on cell morphology in NIH-3T3 cells. Its suppression effect was insignificant on the production of IL-6 and TNF-α in lipopolysaccharides-stimulated RAW264.7 cells. However, calcium ionophore A23187-induced β-hexosaminidase release was effectively inhibited in a dose-dependent manner in RBL-2H3 cells. Additionally, it was revealed to be non-irritating to bionic epidermal tissues. Notably, procollagen production was promoted in Hs68 cells. Overall, the data revealed that R-PE purified from C. formosanum exhibits anti-allergic and anti-aging bioactivities with no observed consequential toxicity on multiple mammalian cell lines as well as epidermal tissues, suggesting that this macromolecule is a novel material for potential cosmetic use.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
S C R Sherratt ◽  
P Libby ◽  
D L Bhatt ◽  
H Dawoud ◽  
T Malinski ◽  
...  

Abstract Background Atherosclerotic plaques can elaborate reactive oxygen species (ROS) that reduce nitric oxide (NO) bioavailability. Cellular detoxification enzymes including various peroxiredoxin (PRDX) and superoxide dismutase (SOD) isoforms can inactivate ROS. The omega-3 fatty acid (n3-FA) eicosapentaenoic acid (EPA) reduced cardiovascular (CV) events in high-risk patients (REDUCE-IT), a benefit not observed with mixed n3-FAs containing docosahexaenoic acid (DHA). Purpose The purpose of this study was to compare the effects of EPA and DHA on NO bioavailability and expression of detoxification enzymes in the vascular endothelium in vitro. Methods Human umbilical vein endothelial cells (HUVECs) were pretreated with EPA or DHA at equimolar levels (10 μM) for 2 h, then challenged with IL-6 at 12 ng/ml for 24 h. Proteomic analysis was performed using LC/MS to measure relative protein expression. Only significant (p<0.05) changes between treatment groups >1-fold were analyzed. Cells were stimulated with calcium ionophore to measure NO and peroxynitrite (ONOO-) release using a porphyrinic nanosensor. Results EPA, but not DHA, augmented PRDX-2 and SOD1 expression in HUVECs relative to IL-6 alone (1.2-fold and 1.6-fold, respectively, p=0.03). EPA also significantly lowered other isoforms unlike DHA. Either EPA or DHA increased thioredoxin expression by 1.5-fold (p=0.001) and 1.3-fold (p=0.02), respectively and decreased SOD2 expression by 1.5-fold (p=8.75E-11) and 1.6-fold (p=6.03E-9), respectively. IL-6 alone only increased expression of 6 detoxification enzymes by at least 1.2-fold, relative to vehicle. Unlike DHA, EPA also increased the NO to ONOO- release ratio by 36% (p<0.05) relative to IL-6 alone, without changes in NO synthase (eNOS) expression. Conclusions n3-FAs differentially influenced NO bioavailability and expression of ROS detoxification proteins, including peroxiredoxin and SOD isoforms. The net benefits of EPA on eNOS function and ROS detoxification may contribute to reduced atherothrombotic risk compared to DHA. FUNDunding Acknowledgement Type of funding sources: Private company. Main funding source(s): Amarin Pharma Inc., Elucida Research


2021 ◽  
Vol 116 (3) ◽  
pp. e337
Author(s):  
Marga Esbert ◽  
Andrew F. Carmody ◽  
Rosanna Pangasnan ◽  
Agustin Ballesteros ◽  
Emre Seli ◽  
...  

2021 ◽  
Vol 116 (3) ◽  
pp. e139
Author(s):  
Ines Chabchoub ◽  
Sonia Mnallah ◽  
med Habib BEN Aribia ◽  
Khaled Mahmoud ◽  
Mohamed Khrouf ◽  
...  

Reproduction ◽  
2021 ◽  
Author(s):  
Lauriane Relav ◽  
Christopher Price

Controling the duration and amplitude of mitogen activated protein kinase (MAPK) signaling is an important element in deciding cell fate. One group of intracellular negative regulators of MAPK activity is a subfamily of the dual specificity phosphatase (DUSP) superfamily, of which up to 16 members have been described in ovarian granulosa cells. Growth factors stimulate proliferation of granulosa cells through MAPK, PKC and AKT pathways, although it is not known which pathways control DUSP expression in these cells. The aim of the present study was to identify which pathways are involved in the regulation of DUSP expression using a well-established serum-free culture system for bovine granulosa cells. Stimulation of cells with FGF2 increased DUSP1, DUSP5 and DUSP6 mRNA abundance in a time and dose-dependent manner, and increased DUSP5 and DUSP6 protein accumulation. None of the other eleven DUSP measured were regulated by FGF2. Pharmacological inhibition of MAPK3/1 signaling decreased FGF2-stimulated DUSP1, DUSP5 and DUSP6 mRNA levels (p < 0.05) whereas inhibition of PKC did not affect the expression of these three DUSPs. Abundance of FGF2-dependent DUSP6 mRNA was reduced by inhibition of PLC or by chelating calcium, but DUSP5 mRNA abundance was not affected. Abundance of basal DUSP1 and DUSP6, but not DUSP5, mRNA was increased by the addition of the calcium ionophore A23187. We conclude that FGF2 stimulation of DUSP5 abundance requires MAPK3/1 whereas DUSP6 mRNA accumulation is dependent on calcium signaling as well as MAPK3/1 activation, suggesting complex regulation of physiologically important DUSPs in the follicle.


Author(s):  
C. Larrazabal ◽  
C. Hermosilla ◽  
A. Taubert ◽  
I. Conejeros

AbstractNeospora caninum represents an obligate intracellular parasite that belongs to the phylum Apicomplexa and is a major abortive agent in bovines. During merogony, N. caninum tachyzoites invade and proliferate in host cells in vivo, including endothelial cells of lymphatic and blood vessels. The egress at the end of the lytic cycle is tightly regulated in apicomplexans. Evidence in Toxoplasma gondii shows that Ca++ signalling governs tachyzoite egress. Much less is known on egress mechanisms of N. caninum. Here, we show, using 3D live cell holotomographic microscopy in fluo-4 AM-loaded N. caninum-infected BUVEC, that treatments with the calcium ionophore A23187 at 24- and 42-h post-infection (h p. i.) induced a fast and sustained increase in Ca++ signals in parallel to tachyzoite egress. A23187 treatments exclusively triggered tachyzoite release at 42-h p. i. but failed to do so at 24-h p. i. indicating a role for meront maturation in calcium-induced tachyzoite egress. Overall, we show that live cell 3D holotomographic analysis in combination with epifluorescence is a suitable tool to study calcium dynamics related to coccidian egress or other important cell functions.


Sign in / Sign up

Export Citation Format

Share Document