scholarly journals Identification and Functional Analysis of a Pseudo-Cysteine Protease from the Midgut Transcriptome of Sphenophorus levis

2021 ◽  
Vol 22 (21) ◽  
pp. 11476
Author(s):  
Priscila Yumi Tanaka Shibao ◽  
Milene Ferro ◽  
Fernando Fonseca Pereira de Paula ◽  
Bruno Salata Lima ◽  
Flávio Henrique-Silva

The Sphenophorus levis (Coleoptera, Curculionidae) is one of the main pests of sugarcane in Brazil. Although its major digestive proteases are known, its complex digestive process still needs to be further understood. We constructed a transcriptome from the midgut of 30-day-old larvae and identified sequences similar to its major digestive protease (cysteine cathepsin Sl-CathL), however, they presented a different amino acid than cysteine in the active cleft. We identified, recombinantly produced, and characterized Sl-CathL-CS, a pseudo cysteine protease, and verified that higher gene expression levels of Sl-CathL-CS occur in the midgut of 30-day old larvae. We reverted the serine residue to cysteine and compared the activity of the mutant (Sl-CathL-mutSC) with Sl-CathL-CS. Sl-CathL-CS presented no protease activity, but Sl-CathL-mutSC hydrolyzed Z-Phe-Arg-AMC (Vmax = 1017.60 ± 135.55, Km = 10.77 mM) and was inhibited by a cysteine protease inhibitor E-64 (Ki = 38.52 ± 1.20 μM), but not by the serine protease inhibitor PMSF. Additionally, Sl-CathL-CS interacted with a sugarcane cystatin, while Sl-CathL-mutSC presented weaker interaction. Finally, protein ligand docking reinforced the differences in the catalytic sites of native and mutant proteins. These results indicate that Sl-CathL-CS is a pseudo-cysteine protease that assists protein digestion possibly by interacting with canecystatins, allowing the true proteases to work.

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 388
Author(s):  
Hương Giang Lê ◽  
A-Jeong Ham ◽  
Jung-Mi Kang ◽  
Tuấn Cường Võ ◽  
Haung Naw ◽  
...  

Naegleria fowleri is a free-living amoeba that is ubiquitous in diverse natural environments. It causes a fatal brain infection in humans known as primary amoebic meningoencephalitis. Despite the medical importance of the parasitic disease, there is a great lack of knowledge about the biology and pathogenicity of N. fowleri. In this study, we identified and characterized a novel cysteine protease inhibitor of N. fowleri (NfCPI). NfCPI is a typical cysteine protease inhibitor belonging to the cystatin family with a Gln-Val-Val-Ala-Gly (QVVAG) motif, a characteristic motif conserved in the cystatin family of proteins. Bacterially expressed recombinant NfCPI has a dimeric structure and exhibits inhibitory activity against several cysteine proteases including cathespin Bs of N. fowleri at a broad range of pH values. Expression profiles of nfcpi revealed that the gene was highly expressed during encystation and cyst of the amoeba. Western blot and immunofluorescence assays also support its high level of expression in cysts. These findings collectively suggest that NfCPI may play a critical role in encystation or cyst formation of N. fowleri by regulating cysteine proteases that may mediate encystation or mature cyst formation of the amoeba. More comprehensive studies to investigate the roles of NfCPI in encystation and its target proteases are necessary to elucidate the regulatory mechanism and the biological significance of NfCPI.


2005 ◽  
Vol 96 (1) ◽  
pp. 137-144 ◽  
Author(s):  
A.M. Zagariya ◽  
R. Bhat ◽  
E. Zhabotynsky ◽  
G. Chari ◽  
S. Navale ◽  
...  

2017 ◽  
Vol 26 (4) ◽  
pp. 563-569 ◽  
Author(s):  
Bartłomiej Stańczykiewicz ◽  
Marta Jakubik-Witkowska ◽  
Antoni Polanowski ◽  
Tadeusz Trziszka ◽  
Joanna Rymaszewska

2017 ◽  
Vol 41 (4) ◽  
pp. 1049-1058
Author(s):  
Manal Salah El-Din Mahmoud ◽  
Ayman Nabil Ibrahim ◽  
Abeer Fathy Badawy ◽  
Nourhan Mohamed Abdelmoniem

Sign in / Sign up

Export Citation Format

Share Document