scholarly journals Designing a Structural Health Monitoring System Accounting for Temperature Compensation

2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Valeria Francesca Caspani ◽  
Daniel Tonelli ◽  
Francesca Poli ◽  
Daniele Zonta

Structural health monitoring is effective if it allows us to identify the condition state of a structure with an appropriate level of confidence. The estimation of the uncertainty of the condition state is relatively straightforward a posteriori, i.e., when monitoring data are available. However, monitoring observations are not available when designing a monitoring system; therefore, the expected uncertainty must be estimated beforehand. This paper proposes a framework to evaluate the effectiveness of a monitoring system accounting for temperature compensation. This method is applied to the design process of a structural health monitoring system for civil infrastructure. In particular, the focus is on the condition-state parameters representing the structural long-term response trend, e.g., due to creep and shrinkage effects, and the tension losses in prestressed concrete bridges. The result is a simple-to-use equation that estimates the expected uncertainty of a long-term response trend of temperature-compensated response measurements in the design phase. The equation shows that the condition-state uncertainty is affected by the measurement and model uncertainties, the start date and duration of the monitoring activity, and the sampling frequency. We validated our approach on a real-life case study: the Colle Isarco viaduct. We verified whether the pre-posterior estimation of expected uncertainty, performed with the experimented approach, is consistent with the real uncertainty estimated a posteriori based on the monitoring data.

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 110 ◽  
Author(s):  
Shao-Fei Jiang ◽  
Ze-Hui Qiao ◽  
Ni-Lei Li ◽  
Jian-Bin Luo ◽  
Sheng Shen ◽  
...  

Due to the long-term service, Chinese ancient timber buildings show varying degrees of wear. Thus, structural health monitoring (SHM) for these cultural and historical treasures is desperately needed to evaluate the service status. Although there are some FBG sensing-based SHM systems, they are not suitable for Chinese ancient timber buildings due to the differences in architectural types, structural loads, materials, and environment. Besides, a technical gap in Fiber Bragg grating (FBG) sensing-based column inclination monitoring exists. To overcome these weaknesses, this paper develops an FBG sensing-based structural health monitoring system for Chinese ancient Chuan-dou-type timber buildings that aims at monitoring structural deformation, i.e., beam deflection and column inclination, temperature, humidity, and fire around the building. An in-situ test and simulation analyses were conducted to verify the effectiveness of the developed SHM system. To validate the long-term-operation of the developed SHM system, monitoring data within 15 months were analyzed. The results show good agreement between the developed SHM system in this paper and other methods. In addition, the SHM system operated well in the first year after its deployment. This implies that the developed SHM system is applicable and effective in the health state monitoring of Chinese ancient Chuan-dou-type timber buildings, laying a foundation for damage prognosis of such types of timber buildings.


2017 ◽  
Vol 20 (5) ◽  
pp. 674-681 ◽  
Author(s):  
XW Ye ◽  
T Liu ◽  
YQ Ni

The long-term performance of engineering structures in a corrosive environment will be significantly affected by the coupled action of corrosion and fatigue. In this article, a probabilistic corrosion fatigue analytical model is proposed by taking into account the effects of corrosion-induced reduction of the cross-sectional area and deterioration of the fatigue strength of structural components. The proposed model is exemplified to evaluate the probabilistic corrosion fatigue life of a typical welded joint in the suspension Tsing Ma Bridge instrumented with a long-term structural health monitoring system. A genetic algorithm–based mixture parameter estimation method is developed to facilitate the multimodal modeling of stress spectrum derived from the long-term monitoring data of dynamic strain. The achieved results demonstrate that with the increase in the service life, the reliability index of the investigated typical welded joint is dramatically reduced under the combined effect of corrosion and fatigue.


Sign in / Sign up

Export Citation Format

Share Document