scholarly journals Development of an ESMF Based Flexible Coupling Application of ADCIRC and WAVEWATCH III for High Fidelity Coastal Inundation Studies

2020 ◽  
Vol 8 (5) ◽  
pp. 308 ◽  
Author(s):  
Saeed Moghimi ◽  
Andre Van der Westhuysen ◽  
Ali Abdolali ◽  
Edward Myers ◽  
Sergey Vinogradov ◽  
...  

To enable flexible model coupling in coastal inundation studies, a coupling framework based on the Earth System Modeling Framework (ESMF) and the National Unified Operational Prediction Capability (NUOPC) technologies under a common modeling framework called the NOAA Environmental Modeling System (NEMS) was developed. The framework is essentially a software wrapper around atmospheric, wave and storm surge models that enables its components communicate seamlessly, and efficiently to run in massively parallel environments. For the first time, we are introducing the flexible coupled application of the ADvanced CIRCulation model (ADCIRC) and unstructured fully implicit WAVEWATCH III including NUOPC compliant caps to read Hurricane Weather Research and Forecasting Model (HWRF) generated forcing fields. We validated the coupled application for a laboratory test and a full scale inundation case of the Hurricane Ike, 2008, on a high resolution mesh covering the whole US Atlantic coast. We showed that how nonlinear interaction between surface waves and total water level results in significant enhancements and progression of the inundation and wave action into land in and around the hurricane landfall region. We also presented that how the maximum wave setup and maximum surge regions may happen at the various times and locations depending on the storm track and geographical properties of the landfall area.

2014 ◽  
Vol 29 ◽  
pp. 1515-1524 ◽  
Author(s):  
Dali Wang ◽  
Joseph Schuchart ◽  
Tomislav Janjusic ◽  
Frank Winkler ◽  
Yang Xu ◽  
...  

2014 ◽  
Vol 7 (1) ◽  
pp. 1115-1136 ◽  
Author(s):  
C. A. Keller ◽  
M. S. Long ◽  
R. M. Yantosca ◽  
A. M. Da Silva ◽  
S. Pawson ◽  
...  

Abstract. We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions and species on a user-specified grid and can combine, overlay, and update a set of data inventories and scale factors, selected by the user from a data library through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any pre-processing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA GEOS-5 Earth System Model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and data libraries are available at http://wiki.geos-chem.org/HEMCO.


2005 ◽  
Vol 5 (2) ◽  
pp. 433-444 ◽  
Author(s):  
P. Jöckel ◽  
R. Sander ◽  
A. Kerkweg ◽  
H. Tost ◽  
J. Lelieveld

Abstract. The development of a comprehensive Earth System Model (ESM) to study the interactions between chemical, physical, and biological processes, requires coupling of the different domains (land, ocean, atmosphere, ...). One strategy is to link existing domain-specific models with a universal coupler, i.e. an independent standalone program organizing the communication between other programs. In many cases, however, a much simpler approach is more feasible. We have developed the Modular Earth Submodel System (MESSy). It comprises (1) a modular interface structure to connect to a , (2) an extendable set of such for miscellaneous processes, and (3) a coding standard. MESSy is therefore not a coupler in the classical sense, but exchanges data between a and several within one comprehensive executable. The internal complexity of the is controllable in a transparent and user friendly way. This provides remarkable new possibilities to study feedback mechanisms (by two-way coupling). Note that the MESSy and the coupler approach can be combined. For instance, an atmospheric model implemented according to the MESSy standard could easily be coupled to an ocean model by means of an external coupler. The vision is to ultimately form a comprehensive ESM which includes a large set of submodels, and a base model which contains only a central clock and runtime control. This can be reached stepwise, since each process can be included independently. Starting from an existing model, process submodels can be reimplemented according to the MESSy standard. This procedure guarantees the availability of a state-of-the-art model for scientific applications at any time of the development. In principle, MESSy can be implemented into any kind of model, either global or regional. So far, the MESSy concept has been applied to the general circulation model ECHAM5 and a number of process boxmodels.


2016 ◽  
Vol 136 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Michael J. Scott ◽  
Don S. Daly ◽  
Mohamad I. Hejazi ◽  
G. Page Kyle ◽  
Lu Liu ◽  
...  

2014 ◽  
Vol 7 (4) ◽  
pp. 1409-1417 ◽  
Author(s):  
C. A. Keller ◽  
M. S. Long ◽  
R. M. Yantosca ◽  
A. M. Da Silva ◽  
S. Pawson ◽  
...  

Abstract. We describe the Harvard–NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http://wiki.geos-chem.org/HEMCO.


Sign in / Sign up

Export Citation Format

Share Document