atmospheric models
Recently Published Documents


TOTAL DOCUMENTS

765
(FIVE YEARS 169)

H-INDEX

57
(FIVE YEARS 8)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Romain Gaillard ◽  
Marjorie Perroud ◽  
Stéphane Goyette ◽  
Jérôme Kasparian

AbstractThe interaction between large inland water bodies and the atmosphere impacts the evolution of regional weather and climate, which in turn affects the lake dynamics, thermodynamics, ice-formation, and, therefore, ecosystems. Over the last decades, various approaches have been used to model lake thermodynamics and dynamics in standalone mode or coupled to numerical atmospheric models. We assess a turbulence-closure $$k-\epsilon$$ k - ϵ multi-column lake model in standalone mode as a computationally-efficient alternative to a full three-dimensional hydrodynamic model in the case of Lake Geneva. While it struggles to reproduce some short-term features, the multi-column model reasonably reproduces the seasonal mean of the thermal horizontal and vertical structures governing heat and mass exchanges between the lake surface and the lower atmosphere (stratified period, thermocline depth, stability of the water column). As it requires typically two orders of magnitude less computational ressources, it may allow a two-way coupling with a RCM on timescales or spatial resolutions where full 3D lake models are too demanding.


MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 125-126
Author(s):  
R. Ramanathan

2021 ◽  
Vol 94, 2021 (94) ◽  
pp. 13-19
Author(s):  
Fedir Zablotskyi ◽  
◽  
Bohdan Palianytsia ◽  
Bohdan Kladochnyi ◽  
Olena Nevmerzhytska ◽  
...  

The aim of this work is to evaluate the accuracy of determining the wet component of zenith tropospheric delay (ZTD) from GNSS-measurements and the accuracy of determining the hydrostatic component according to the Saastamoinen model in comparison with the radio sounding data as well. Zenith tropospheric delay is determined mainly by two methods - traditional, using radio sounding or using atmospheric models, such as the Saastamoinen model, and the method of GNSS measurements. Determination of the hydrostatic component of the zenith tropospheric delay was performed by radio sounding data obtained at the aerological station Praha-Libus in 2011-2013 and in 2018. Data were processed for the middle decades of January and July of each year at 0h o’clock of the Universal Time. The wet component was calculated from GNSS observations. By a significant number of radio soundings at the Praha-Libus aerological station, hydrostatic and wet components of zenith tropospheric delay (ZTD) and the same number of ZTD values derived for the corresponding time intervals from GNSS measurements at the GOPE reference station were determined. The values of the wet component of ZTD were determined and compared with the corresponding data obtained from radio soundings. We found that the error of the hydrostatic component in winter does not exceed 10 mm in absolute value, and in summer it is approximately 1.5 times smaller. This is due to differences in the stratification of the troposphere and lower stratosphere in winter and summer. As for the wet component of ZTD, its errors do not exceed: in winter 15 mm, in summer – 35 mm. The resulting differences in summer have a negative sign, indicating a systematic shift, and in winter – both negative and positive. Today, there are many studies aimed at improving the accuracy of determining zenith tropospheric delay by both Ukrainian and foreign authors, but the problem of the accuracy of the hydrostatic component remains open. The study provides recommendations for further research to improve the accuracy of zenith tropospheric delay.


2021 ◽  
Vol 163 (1) ◽  
pp. 35
Author(s):  
Hayley Beltz ◽  
Emily Rauscher ◽  
Michael T. Roman ◽  
Abigail Guilliat

Abstract Ultrahot Jupiters represent an exciting avenue for testing extreme physics and observing atmospheric circulation regimes not found in our solar system. Their high temperatures result in thermally ionized particles embedded in atmospheric winds interacting with the planet’s interior magnetic field by generating current and experiencing bulk Lorentz force drag. Previous treatments of magnetic drag in 3D general circulation models (GCMs) of ultrahot Jupiters have mostly been uniform drag timescales applied evenly throughout the planet, which neglects the strong spatial dependence of these magnetic effects. In this work, we apply our locally calculated active magnetic drag treatment in a GCM of the planet WASP-76b. We find the effects of this treatment to be most pronounced in the planet’s upper atmosphere, where strong differences between the day and night side circulation are present. These circulation effects alter the resulting phase curves by reducing the hot spot offset and increasing the day–night flux contrast. We compare our models to Spitzer phase curves, which imply a magnetic field of at least 3 G for the planet. We additionally contrast our results to uniform drag timescale models. This work highlights the need for more careful treatment of magnetic effects in atmospheric models of hot gas giants.


2021 ◽  
Vol 118 (52) ◽  
pp. e2110889118
Author(s):  
William Bains ◽  
Janusz J. Petkowski ◽  
Paul B. Rimmer ◽  
Sara Seager

The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O2 in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH3), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH3 dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO2 as ammonium sulfite salts. This trapping of SO2 in the clouds, together with the release of SO2 below the clouds as the droplets settle out to higher temperatures, explains the vertical SO2 abundance anomaly. A consequence of the presence of NH3 is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH3 is unknown but could involve biological production; if so, then the most energy-efficient NH3-producing reaction also creates O2, explaining the detection of O2 in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.


2021 ◽  
Author(s):  
Anne Wiese ◽  
Joanna Staneva ◽  
Ha Thi Minh Ho-Hagemann ◽  
Sebastian Grayek ◽  
Wolfgang Koch ◽  
...  

<p>Ziel dieser Studie (Wiese et al., 2020) ist, die Signifikanz des Einflusses des Wellenmodells auf das regionale Atmosphärenmodell und die interne Modellvariabilität sowohl des Atmosphärenmodells, als auch des gekoppelten Systems bestehend aus Wellen- und Atmosphärenmodell zu bestimmen. In einer vorhergehenden Studie wurde gezeigt, dass die Rauigkeit, die im Wellenmodell berechnet wird, größer ist, als die Rauigkeit, die im Atmosphärenmodell approximiert wird, was zu Unterschieden im Atmosphärenmodell führt (Wiese et al. 2019). Hier soll nun untersucht werden, ob diese Unterschiede im Atmosphärenmodell signifikant sind.  Dazu werden Ensemblesimulation mit einem Referenz Setup (das Atmosphärenmodell sendet den Wind an das Wellenmodell) und dem gekoppelten Setup (zusätzlich zum Windaustausch, sendet das Wellenmodell die Rauigkeitslänge über dem Meer zurück an das Atmosphärenmodell) durchgeführt. Bei der Analyse der internen Modellvariabilität zwischen beiden Ensembles zeigt sich, dass die interne Modellvariabilität im gekoppelten Ensemble gegenüber dem Referenzensemble reduziert ist. Dieser Effekt tritt während Extremereignissen am stärksten auf, ist aber auch bei einer generellen Analyse der internen Modellvariabilität über den gesamten Zeitraum sichtbar. Außerdem können die Effekte der Kopplung von der internen Modellvariabilität unterschieden werden, da die Effekte der Kopplung größer sind, als die interne Modellvariabilität. Diese Studie zeigt daher das Potential sowohl in operationellen Systemen als auch Systemen für Klimastudien die Unsicherheit zu reduzieren, wenn das Wellenmodell mit dem Atmosphärenmodell gekoppelt wird. Hinzu kommt, dass die Effekte der Kopplung klar von der internen Modellvariabilität unterschieden werden können, wodurch außerdem eine verbesserte Übereinstimmung des gekoppelten Systems gegenüber dem Referenzensemble mit Beobachtungsdaten erzielt werden kann. In einem nächsten Schritt soll nun zusätzlich der Ozean gekoppelt und die Auswirkungen auf das gesamte System untersucht werden.</p> <p> </p> <p>Literatur:</p> <p>Wiese A, Stanev E, Koch W, Behrens A, Geyer B and Staneva J (2019) The Impact of the Two-Way Coupling between Wind Wave and Atmospheric Models on the Lower Atmosphere over the North Sea. Atmosphere. 10(7):386. doi: 10.3390/atmos10070386</p> <p>Wiese A, Staneva J, Ho-Hagemann HTM, Grayek S, Koch W and Schrum C (2020) Internal Model Variability of Ensemble Simulations With a Regional Coupled Wave-Atmosphere Model GCOAST. Front. Mar. Sci. 7:596843. doi: 10.3389/fmars.2020.596843</p>


2021 ◽  
Author(s):  
Shoji Kusunoki ◽  
Tosiyuki Nakaegawa ◽  
Ryo Mizuta

Abstract The performance of the Meteorological Research Institute-Atmospheric General Circulation model version 3.2 (MRI-AGCM3.2) in simulating precipitation is compared with that of global atmospheric models registerred to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The MRI-AGCM3.2 with the grid size of 20-km and 60-km and 36 CMIP6 models are forced with observed sea surface temperature for 20-year period from 1995 to 2014. The horizontal resolution of the MRI-AGCM3.2 is relatively finer than CMIP6 models. As for global domain, the reproducibility of MRI-AGCM3.2 models are better than or equal to CMIP6 models in simulating geographical distribution of annual precipitation and intense precipitation events. Models with higher horizontal resolution tend to be better than those with lower resolution in simulating global precipitation. As for East Asia, the performance of MRI-AGCM3.2 models are better than or equal to CMIP6 models in simulating summertime monthly precipitation and the seasonal march in the Japanese rainy season, and extreme precipitation events. Higher horizontal resolution models also tend to perform better than lower resolution models in simulating precipitation over East Asia. The advantage of models with higher horizontal resolution over those with lower resolution in reproducing precipitation is more evident over East Asia than over the globe.


2021 ◽  
Vol 21 (23) ◽  
pp. 17291-17314
Author(s):  
Silke Trömel ◽  
Clemens Simmer ◽  
Ulrich Blahak ◽  
Armin Blanke ◽  
Sabine Doktorowski ◽  
...  

Abstract. Cloud and precipitation processes are still a main source of uncertainties in numerical weather prediction and climate change projections. The Priority Programme “Polarimetric Radar Observations meet Atmospheric Modelling (PROM)”, funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), is guided by the hypothesis that many uncertainties relate to the lack of observations suitable to challenge the representation of cloud and precipitation processes in atmospheric models. Such observations can, however, at present be provided by the recently installed dual-polarization C-band weather radar network of the German national meteorological service in synergy with cloud radars and other instruments at German supersites and similar national networks increasingly available worldwide. While polarimetric radars potentially provide valuable in-cloud information on hydrometeor type, quantity, and microphysical cloud and precipitation processes, and atmospheric models employ increasingly complex microphysical modules, considerable knowledge gaps still exist in the interpretation of the observations and in the optimal microphysics model process formulations. PROM is a coordinated interdisciplinary effort to increase the use of polarimetric radar observations in data assimilation, which requires a thorough evaluation and improvement of parameterizations of moist processes in atmospheric models. As an overview article of the inter-journal special issue “Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes”, this article outlines the knowledge achieved in PROM during the past 2 years and gives perspectives for the next 4 years.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022048
Author(s):  
V I Kushtin ◽  
A N Ivanov

Abstract Electromagnetic radiation used to determine ranges passes through media with different characteristics that affect the electromagnetic waves propagation speed and, accordingly, the accuracy of distance determination. The problem of the radio signal delay due to the influence of the atmosphere is an urgent problem, the solution of which is currently limited mainly to the calculation of range corrections using various atmospheric models. Depending on the required accuracy, the length of the measured line, the range of zenith distances, the availability of information about the state of the atmosphere, a flat, spherical, ellipsoidal model of atmospheres is used to determine the range corrections. In view of the fact that the parameters of the atmosphere characterizing its state along the electromagnetic wave path at the time of measurement, as a rule, are unknown, it becomes necessary to apply one or another hypothesis about the distribution of atmospheric parameters with height. In this paper, we propose a solution to the problem of determining corrections to the measured ranges from the known parameters of the atmosphere only at the initial and final points of the electromagnetic waves’ trajectory.


2021 ◽  
Vol 162 (6) ◽  
pp. 296
Author(s):  
Siyi Xu ◽  
Hannah Diamond-Lowe ◽  
Ryan J. MacDonald ◽  
Andrew Vanderburg ◽  
Simon Blouin ◽  
...  

Abstract WD 1856+534 b is a Jupiter-sized, cool giant planet candidate transiting the white dwarf WD 1856+534. Here, we report an optical transmission spectrum of WD 1856+534 b obtained from ten transits using the Gemini Multi-Object Spectrograph. This system is challenging to observe due to the faintness of the host star and the short transit duration. Nevertheless, our phase-folded white light curve reached a precision of 0.12%. WD 1856+534 b provides a unique transit configuration compared to other known exoplanets: the planet is 8× larger than its star and occults over half of the stellar disk during mid-transit. Consequently, many standard modeling assumptions do not hold. We introduce the concept of a “limb darkening corrected, time-averaged transmission spectrum” and propose that this is more suitable than ( R p , λ / R s ) 2 for comparisons to atmospheric models for planets with grazing transits. We also present a modified radiative transfer prescription. Though the transmission spectrum shows no prominent absorption features, it is sufficiently precise to constrain the mass of WD 1856+534 b to be >0.84 M J (to 2σ confidence), assuming a clear atmosphere and a Jovian composition. High-altitude cloud decks can allow lower masses. WD 1856+534 b could have formed either as a result of common envelope evolution or migration under the Kozai–Lidov mechanism. Further studies of WD 1856+534 b, alongside new dedicated searches for substellar objects around white dwarfs, will shed further light on the mysteries of post-main-sequence planetary systems.


Sign in / Sign up

Export Citation Format

Share Document