scholarly journals Wear Risk Prevention and Reduction in Total Hip Arthroplasty. A Personalized Study Comparing Cement and Cementless Fixation Techniques Employing Finite Element Analysis

2021 ◽  
Vol 11 (8) ◽  
pp. 780
Author(s):  
Carlos González-Bravo ◽  
Miguel A. Ortega ◽  
Julia Buján ◽  
Basilio de la Torre ◽  
Loreto Barrios

The wear rate on Total Hip Arthroplasty (THA) entails a heavy burden for patients. This becomes more relevant with increased wear risk and its consequences such as osteolysis. In addition, osteolysis has been described in cemented and uncemented acetabular implants, and nowadays, controversy remains as to whether or not to cement the acetabular component. A personalized theoretical study was carried out to investigate which parameters have an influence on wear risk and to determine the best fixation method. Liner wear risk was assessed for two different types of fixation (cemented vs uncemented) through Finite Elements Analysis (FEA). The intraoperative variables used to determine the wear risk (cervical-diaphyseal angle, Center of Rotation positioning -COR-, head material, head size, and liner thickness) are vital parameters in surgical planning. Two types of tridimensional liner models of Ultra High Molecular Weight Polyethene (UHMWPE) were simulated through finite element analysis (FEA—over 216 cases were the core of this research). A significant relationship was found between the cervical-diaphyseal angle and wear risk (p < 0.0001), especially in valgus morphology. The acetabular fixation technique (p < 0.0001) and liner thickness (p < 0.0001) showed a significant relationship with wear risk. According to our study, using a cemented fixation with a thick liner in the right center of rotation appears to be the proper stratagy for preventing polyethylene liner wear.

2002 ◽  
Author(s):  
D. Leone ◽  
L. Breglia ◽  
J. Gander ◽  
J. Ibets ◽  
C. Teeling ◽  
...  

2020 ◽  
Author(s):  
Shuang G Yan ◽  
Yan Chevalier ◽  
Fanxiao Liu ◽  
Xingyi Hua ◽  
Anna Schreiner ◽  
...  

Abstract Background: Short stem total hip arthroplasty (SHA) preserves femoral bone stock and is supposed to provide a more natural load transfer compared to standard stem total hip arthroplasty (THA). As comparative biomechanical reference data are rare we used a finite element analysis (FEA) approach to compare cortical load transfer after implantations of a metaphyseal anchoring short and standard stem in native biomechanical femora. Methods: The subject specific finite element models of biomechanical femora, one native and two with implanted metaphyseal anchoring SHA (Metha, B.Braun Aesculap) and standard THA (CLS, Zimmer-Biomet), were generated from computed tomography datasets. The loading configuration was performed with an axial force of 1400 N. Von Mises stress was used to investigate the change of cortical stress distribution. Results: Compared to the native femur, a considerable reduction of cortical stress was recorded after implantation of SHA and standard THA. The SHA showed less reduction proximally with a significant higher metaphyseal cortical stress compared to standard THA. Moreover, the highest peak stresses were observed metaphyseal for the SHA stem while for the standard THA high stress pattern was observed more distally. Conclusions: Both, short and standard THA, cause unloading of the proximal femur. However, the metaphyseal anchoring SHA features a clearly favorable pattern in terms of a lower reduction proximally and improved metaphyseal loading, while standard THA shows a higher proximal unloading and more distal load transfer. These load pattern implicate a reduced stress shielding proximally for metaphyseal anchoring SHA stems and might be able to translate in a better bone preservation.


2020 ◽  
Author(s):  
Shuang G Yan ◽  
Yan Chevalier ◽  
Fanxiao Liu ◽  
Xingyi Hua ◽  
Anna Schreiner ◽  
...  

Abstract Background: Short stem total hip arthroplasty (SHA) preserves femoral bone stock and is supposed to provide a more natural load transfer compared to standard stem total hip arthroplasty (THA). As comparative biomechanical reference data are rare we used a finite element analysis (FEA) approach to compare cortical load transfer after implantations of a cementless short and standard stem in native biomechanical femora.Methods: The subject specific finite element models of biomechanical femora, one native and two with implanted SHA (Metha, B.Braun Aesculap) and standard THA (CLS, Zimmer-Biomet), were generated from computed tomography datasets. The loading configuration was performed with an axial force of 1400 N. Von Mises stress was used to investigate the change of cortical stress distribution.Results: Compared to the native femur, a considerable reduction of cortical stress was recorded after implantation of SHA and standard THA. The SHA showed less reduction proximally with a significant higher metaphyseal cortical stress compared to standard THA. Moreover, the highest peak stresses were observed metaphyseal for the SHA stem while for the standard THA high stress pattern was observed more distally.Conclusions: Both, short and standard THA, cause unloading of the proximal femur. However, SHA features a clearly favorable pattern in terms of a lower reduction proximally and improved metaphyseal loading, while standard THA shows a higher proximal unloading and more distal load transfer. These load pattern implicate a reduced stress shielding proximally for SHA and might be able to translate in a better bone preservation.


2010 ◽  
Vol 47 (3) ◽  
pp. 672-677 ◽  
Author(s):  
T. Achour ◽  
M.S.H. Tabeti ◽  
M.M. Bouziane ◽  
S. Benbarek ◽  
B. Bachir Bouiadjra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document