scholarly journals Strong Association of Angiotensin Converting Enzyme-2 Gene Insertion/Deletion Polymorphism with Susceptibility to SARS-CoV-2, Hypertension, Coronary Artery Disease and COVID-19 Disease Mortality

2021 ◽  
Vol 11 (11) ◽  
pp. 1098
Author(s):  
Mohammad Muzaffar Mir ◽  
Rashid Mir ◽  
Mushabab Ayed Abdullah Alghamdi ◽  
Badr Abdulmohsin Alsayed ◽  
Javed Iqbal Wani ◽  
...  

Background: The ongoing outbreak of SARS-CoV-2 represents a significant challenge to international health. Several reports have highlighted the importance of ACE2 on the pathogenesis of COVID-19. The spike protein of SARS-CoV-2 efficiently binds to the angiotensin-converting enzyme 2 (ACE2) receptors and facilitates virus entry into the host cell. In the present study, we hypothesize that a functional insertion/deletion polymorphism-rs4646994 I/D and rs4240157 T > C in the ACE gene could be associated with SARS-CoV-2 infection and mortality. Methodology: This study included 117 consecutive COVID-19 patients and 150 age matched healthy controls (ACE2-rs4646994 I/D) and 100 age matched healthy controls with ACE2 rs4240157 T > C. We used Mutation specific PCR (MSP) for ACE2-rs4646994 I/D genotyping and amplification refractory mutation system (ARMS-PCR) for ACE2 rs4240157 T > C genotyping. Results: Results indicated that there were significant differences in the genotype distributions of ACE2-rs4646994 I/D polymorphisms (p < 0.030) and ACE2 rs4240157 T > C between COVID-19 patients and controls (p-values < 0.05). Higher frequency of DD genotype (48.71%) and D allele (0.67) was reported in COVID-19 patients than controls. Our results showed that the ACE2-DD genotype was strongly associated with increased COVID-19 severity (OR 2.37 (95%) CI = (1.19–4.70), RR = 1.39 (1.09–1.77), p < 0.013) and also a strong association was seen with ACE2-ID genotype with COVID-19 severity (OR 2.20 (95%) CI = (1.08–4.46), p < 0.020) in the codominant model. In allelic comparison, the D allele was strongly associated with COVID-19 severity (OR 1.58 (95% CI) (1.11–2.27), RR 1.21 (1.05–1.41) p < 0.010). A significant correlation of ACE2-I/D genotypes was reported with Age (p < 0.035), T2D (p < 0.0013), hypertension (p < 0.0031) and coronary artery disease (p < 0.0001). Our results indicated ACE2-DD genotype was strongly associated with increased COVID-19 mortality (OR 8.25 (95%) CI = (2.40 to 28.34), p < 0.008) and also ACE2-DD + DI genotype was strongly associated with increased COVID-19 mortality with OR 4.74 (95%) CI = (1.5214 to 14.7915), p < 0.007. A significant correlation was reported between COVID-19 patients and age matched controls (p < 0.0007). Higher frequency of heterozygosity TC (40%) followed by ACE2-CC genotype (24.78%) was reported among COVID-19 patients. Using multivariate analysis, ACE2–CT genotype was strong associated with SARS-CoV-2 severity with an OR 2.18 (95% CI) (1.92–3.99), p < 0.010 and also ACE2–CC genotype was linked with COVID-19 severity with an OR 2.66 (95% CI) (1.53–4.62), p < 0.005. A significant correlation of ACE2-T > C genotypes was reported with gender (p < 0.04), T2D (p < 0.035). ACE2-CC genotype was strongly associated with increased COVID-19 mortality OR 3.66 (95%) CI = (1.34 to 9.97), p < 0.011 and also ACE2-C allele was associated with COVID-19 mortality OR 2, 01 (1.1761–3.45), p < 0.010. Conclusions: It is concluded that ACE-DD genotype and D allele was strongly associated with increased COVID-19 patient severity. In addition, ACE I/D polymorphism were strongly associated with advanced age, diabetes and ischemic heart disease in COVID-19 patients whereas ACE-II genotype was a protective factor against the development of severe COVID-19. ACE2-DD genotype was strongly associated with increased COVID-19 mortality. Additionally, ACE2–CC and CT genotypes were strongly associated with COVID-19 severity. Therefore, our study might be useful for identifying the susceptible population groups for targeted interventions and for making relevant public health policy decisions.

Author(s):  
Sébastien Colombier ◽  
Thabodhan Mahendiran ◽  
Lars Niclauss ◽  
Matthias Kirsch

Abstract Background The new β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to exhibit cardiovascular pathogenicity through use of angiotensin-converting enzyme 2 (ACE2) for cell entry and the development of a major systemic inflammation. Furthermore, cardiovascular comorbidities increase susceptibility to SARS-CoV-2 infection and the development of a severe form of COronaVIrus Disease 2019 (COVID-19). Case summary We describe the case of a COVID-19 patient whose inaugural presentation was a refractory cardiac arrest secondary to the destabilization of known, non-significant coronary artery disease. Patient was supported by venoarterial extracorporeal life support. After 12 h of support, cardiac function remained stable on low vasopressor support but the patient remained in a coma and brainstem death was diagnosed. Discussion Myocardial injury is frequently seen among critically unwell COVID-19 patients and increases the risk of mortality. This case illustrates several potential mechanisms that are thought to drive the cardiac complications seen in COVID-19. We present the potential role of inflammation and ACE2 in the pathophysiology of COVID-19.


2018 ◽  
Vol 1 (2) ◽  
pp. 44
Author(s):  
Dražena Hadžibeganović ◽  
Rifet Terzić ◽  
Amela Jusić ◽  
Aldijana Avdić

One of the genes considered as a risk factor for coronary artery disease (CAD) is the angiotensin-converting enzyme (ACE) gene. Many studies have been published regarding the relation between the ACE gene insertion/deletion (I/D) polymorphism and CAD. However, studies have provided controversial results. To explore this further in the population of Bosnia and Herzegovina, we compared the ACE I/D genotypes and alleles distribution between two groups: 100 CAD patients and 100 healthy control subjects. The higher distribution of DD genotype (47.0%) and D allele (65.5%) were found in CAD patients compared to controls (DD 34.0%; D allele 51.0%). Genotype odds ratio, (DD + ID) on the II, was 2.471 (1.252 – 4.876; 95% CI; p < 0.05). This leads to the conclusion that the DD genotype of the ACE I/D polymorphism affects the risk for development of coronary artery disease in Bosnian population.


Sign in / Sign up

Export Citation Format

Share Document