scholarly journals Ant Colony Optimization for Multiple Pickup and Multiple Delivery Vehicle Routing Problem with Time Window and Heterogeneous Fleets

Logistics ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
Phan Nguyen Ky Phuc ◽  
Nguyen Le Phuong Thao

This study focuses on solving the vehicle routing problem (VRP) of E-logistics service providers. In our problem, each vehicle must visit some pick up nodes first, for instance, warehouses to pick up the orders then makes deliveries for customers in the list. Each pickup node has its own list of more than one customers requiring delivery. The objective is to minimize the total travelling cost while real-world application constraints, such as heterogeneous vehicles, capacity limits, time window, driver working duration, etc. are still considered. This research firstly proposes a mathematical model for this multiple pickup and multiple delivery vehicle routing problem with time window and heterogeneous fleets (MPMDVRPTWHF). In the next step, the ant colony optimization algorithm is studied to solve the problem in the large-scale.

Author(s):  
Ольга Эдуардовна Долгова ◽  
Владимир Викторович Пересветов

Рассмотрена задача маршрутизации транспорта с ограничениями по временным окнам. Требовалось составить план доставки товара клиентам, построив маршруты движения идентичных транспортных средств так, чтобы общая длина пройденного пути была минимальной. Для решения задачи разработан гибридный алгоритм. Он состоит из методов построения исходных решений, муравьиного алгоритма и локального поиска. В муравьином алгоритме в процессе формирования маршрутов разрешается нарушение временных ограничений при условии добавления штрафа в целевую функцию. Предложенный метод показал высокую эффективность при решении задач кластерного типа и задач с долгосрочным горизонтом планирования. The purpose of this paper is to improve the performance of a hybrid method based on ant colony optimization (ACO) that finds approximate solutions of the vehicle routing problem with time windows (VRPTW). In order to solve this problem it is required to design a plan for goods delivery to the customers generating the routes of identical vehicles so that the total travelled distance is minimal. For the VRPTW solving, the hybrid method is developed in which a usage of trial solutions makes it possible to explore the most promising parts of the search space. The initial methods for solution construction, an ant colony optimization (ACO) algorithm and local search are proposed in the framework of the hybrid method. In the ACO algorithm, when generating the routes, it is allowed to violate the time window constraints. A method to restore the feasibility of solutions is implemented within the relaxation scheme under “returns in time” principle. Numerical results for solving all problems with 25, 50 and 100 customers from the Solomon test set are obtained. We provide the results on the time and deviation of the solution of these problems in comparison with the results of other authors. Some problems and their classes were solved much faster by the algorithm proposed in this paper. Relative deviations from optimal values of the objective function for the most complex tasks decrease with increasing decision time. The proposed approach can be considered to be an additional or an alternative algorithm for solving the cluster type and the long-term planning horizon problems of the VRPTW.


2021 ◽  
Vol 15 (3) ◽  
pp. 429-434
Author(s):  
Luka Olivari ◽  
Goran Đukić

Dynamic Vehicle Routing Problem is a more complex version of Vehicle Routing Problem, closer to the present, real-world problems. Heuristic methods are used to solve the problem as Vehicle Routing Problem is NP-hard. Among many different solution methods, the Ant Colony Optimization algorithm is proven to be the efficient solution when dealing with the dynamic version of the problem. Even though this problem is known to the scientific community for decades, the field is extremely active due to technological advancements and the current relevance of the problem. As various sub-types of routing problems and solution methods exist, there is a great number of possible problem-solution combinations and research directions. This paper aims to make a focused review of the current state in the field of Dynamic Vehicle Routing Problems solved by Ant Colony Optimization algorithm, to establish current trends in the field.


Sign in / Sign up

Export Citation Format

Share Document