scholarly journals Vibration and Damping Analysis of Pipeline System Based on Partially Piezoelectric Active Constrained Layer Damping Treatment

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1209
Author(s):  
Yuanlin Zhang ◽  
Xuefeng Liu ◽  
Weichong Rong ◽  
Peixin Gao ◽  
Tao Yu ◽  
...  

Pipelines work in serious vibration environments caused by mechanical-based excitation, and it is thus challenging to put forward effective methods to reduce the vibration of pipelines. The common vibration control technique mainly uses the installation of dampers, constrained layer damping materials, and an optimized layout to control the vibration of pipelines. However, the passive damping treatment has little influence on the low frequency range of a pipeline system. Active control technology can obtain a remarkable damping effect. An active constrained layer damping (ACLD) system with piezoelectric materials is proposed in this paper. This paper aims to investigate the vibration and damping effect of ACLD pipeline under fixed support. The finite element method is employed to establish the motion equations of the ACLD pipeline. The effect of the thickness and elastic modulus of the viscoelastic layer, the laying position, and the coverage of ACLD patch, and the voltage of the piezoelectric material are all considered. The results show that the best damping performance can be obtained by selecting appropriate control parameters, and it can provide effective design guidance for active vibration control of a pipeline system.

2019 ◽  
Vol 9 (10) ◽  
pp. 2094 ◽  
Author(s):  
Jingyu Zhai ◽  
Jiwu Li ◽  
Daitong Wei ◽  
Peixin Gao ◽  
Yangyang Yan ◽  
...  

In this paper, vibration control of an aero pipeline system using active constrained layer damping treatment has been investigated in terms of the vibration and stress distribution. A three-dimensional finite element model of such a pipeline with active constrained layer damping (ACLD) patches is developed. The transfer of the driving force under harmonic voltage is analyzed based on the finite element model. The vibration control of the pipeline with active constrained layer damping treatment under different voltages is computed to analyze the influence of control parameters and structural parameters on the control effect. An experiment platform is developed to validate the above relations. Results show that the performance of the active constrained layer damping treatment is affected by the elastic modulus and thickness of the viscoelastic layer, control voltage and structure size. The performance increases significantly with the rising of the control voltage and cover area of ACLD patches among these parameters.


2002 ◽  
Vol 8 (6) ◽  
pp. 747-775 ◽  
Author(s):  
Farhan Gandhi ◽  
Brian Munsky

This paper highlights the importance of considering the piezoelectric constraining layer voltage (or electric field) limits when evaluating the effectiveness of an active constrained layer damping treatment in attenuating resonant vibration. It is seen that, when position feedback is used, intermediate viscoelastic layer stiffness values are always optimal, and maximum allowable control gains and possible vibration attenuation progressively decrease with increasing excitation force levels. On the other hand, with velocity feedback, the optimal viscoelastic layer stiffness is dependent on the excitation level. For low excitation force amplitudes, stiff viscoelastic layers are most effective, with large velocity feedback gains producing substantial vibration attenuation without exceeding piezoelectric layer voltage limits. However, for higher excitation force levels, stiff viscoelastic layers result in excess voltages even at very small velocity feedback gains, and are unable to provide any vibration attenuation. In such a case, intermediate viscoelastic layer stiffness values are preferable, and maximum velocity feedback gains and possible vibration attenuation progressively decrease with increasing excitation level, as in the case of position feedback. For both position and velocity feedback, when excitation forces are beyond a certain level the allowable control gains are so limited that no additional damping is obtained beyond that already available through the passive treatment.


Sign in / Sign up

Export Citation Format

Share Document