scholarly journals Sustained Delivery of Lactoferrin Using Poloxamer Gels for Local Bone Regeneration in a Rat Calvarial Defect Model

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 212
Author(s):  
Young Eun Park ◽  
Kaushik Chandramouli ◽  
Maureen Watson ◽  
Mark Zhu ◽  
Karen E. Callon ◽  
...  

Lactoferrin (LF) is a multifunctional milk glycoprotein that promotes bone regeneration. Local delivery of LF at the bone defect site is a promising approach for enhancement of bone regeneration, but efficient systems for sustained local delivery are still largely missing. The aim of this study was to investigate the potential of the poloxamers for sustained delivery of LF to enhance local bone regeneration. The developed LF/poloxamer formulations were liquid at room temperature (20 °C) transforming to a sustained releasing gel depot at body temperature (37 °C). In vitro release studies demonstrated an initial burst release (~50%), followed by slower release of LF for up to 72 h. Poloxamer, with and without LF, increased osteoblast viability at 72 h (p < 0.05) compared to control, and the immune response from THP-1 cells was mild when compared to the suture material. In rat calvarial defects, the LF/poloxamer group had lower bone volume than the controls (p = 0.0435). No difference was observed in tissue mineral density and lower bone defect coverage scores (p = 0.0267) at 12 weeks after surgery. In conclusion, LF/poloxamer formulations support cell viability and do not induce an unfavourable immune response; however, LF delivery via the current formulation of LF200/poloxamer gel did not demonstrate enhanced bone regeneration and was not compatible with the rat calvarial defect model.

2019 ◽  
Vol 7 (20) ◽  
pp. 3250-3259 ◽  
Author(s):  
Yali Miao ◽  
Yunhua Chen ◽  
Xiao Liu ◽  
Jingjing Diao ◽  
Naru Zhao ◽  
...  

3D-printed β-TCP scaffolds decorated with melatonin via dopamine mussel-inspired chemistry enhance the osteogenesis and in vivo bone regeneration.


2020 ◽  
Vol 20 ◽  
pp. 100706 ◽  
Author(s):  
Hoang Phuc Dang ◽  
Cedryck Vaquette ◽  
Tara Shabab ◽  
Román A. Pérez ◽  
Ying Yang ◽  
...  

2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Toru Takemoto ◽  
Yuji Kabasawa ◽  
Yusuke Higuchi ◽  
Yasuhiko Tabata ◽  
Kazuhiro Aoki ◽  
...  

2013 ◽  
Vol 9 (8) ◽  
pp. 8015-8026 ◽  
Author(s):  
Lianxiang Bi ◽  
Mohamed N. Rahaman ◽  
Delbert E. Day ◽  
Zackary Brown ◽  
Christopher Samujh ◽  
...  

Materials ◽  
2017 ◽  
Vol 10 (8) ◽  
pp. 927 ◽  
Author(s):  
Yin-Zhe An ◽  
Young-Ku Heo ◽  
Jung-Seok Lee ◽  
Ui-Won Jung ◽  
Seong-Ho Choi

Author(s):  
Lunhao Li ◽  
Yiyu Peng ◽  
Qingyue Yuan ◽  
Jing Sun ◽  
Ai Zhuang ◽  
...  

Different types of biomaterials have been used to repair the defect of bony orbit. However, exposure and infections are still critical risks in clinical application. Biomaterials with characteristics of osteogenesis and antibiosis are needed for bone regeneration. In this study, we aimed to characterize the antimicrobial effects of cathelicidin-LL37 and to assess any impacts on osteogenic activity. Furthermore, we attempted to demonstrate the feasibility of LL37 as a potential strategy in the reconstruction of clinical bone defects. Human adipose-derived mesenchyme stem cells (hADSCs) were cultured with different concentrations of LL37 and the optimum concentration for osteogenesis was selected for further in vitro studies. We then evaluated the antibiotic properties of LL37 at the optimum osteogenic concentration. Finally, we estimated the efficiency of a PSeD/hADSCs/LL37 combined scaffold on reconstructing bone defects in the rat calvarial defect model. The osteogenic ability on hADSCs in vitro was shown to be dependent on the concentration of LL37 and reached a peak at 4 μg/ml. The optimum concentration of LL37 showed good antimicrobial properties against Escherichia coli and Staphylococcus anurans. The combination scaffold of PSeD/hADSCs/LL37 showed superior osteogenic properties compared to the PSeD/hADSCs, PSeD, and control groups scaffolds, indicating a strong bone reconstruction effect in the rat calvarial bone defect model. In Conclusion, LL37 was shown to promote osteogenic differentiation in vitro as well as antibacterial properties. The combination of PSeD/hADSCs/LL37 was advantageous in the rat calvarial defect reconstruction model, showing high potential in clinical bone regeneration.


Author(s):  
Jeong-Hun Nam ◽  
Kyung-Lok Noh ◽  
Eun-O Pang ◽  
Woo-Geun Yu ◽  
Eung-Sun Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document