defect model
Recently Published Documents


TOTAL DOCUMENTS

1092
(FIVE YEARS 234)

H-INDEX

59
(FIVE YEARS 8)

2022 ◽  
Vol 30 ◽  
pp. 103050
Author(s):  
Ming-Kai Hsieh ◽  
Chi-Yun Wang ◽  
Chia-Jung Wu ◽  
Ying-Cen Chen ◽  
Shinn-Chih Wu ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 289
Author(s):  
Yusser Olguín ◽  
Soledad Acuna-Mendoza ◽  
Carolina Otero ◽  
Cristian A. Acevedo ◽  
Cristian Covarrubias

Modulation of the bio-regenerative characteristics of materials is an indispensable requirement in tissue engineering. Particularly, in bone tissue engineering, the promotion of the osteoconductive phenomenon determines the elemental property of a material be used therapeutically. In addition to the chemical qualities of the constituent materials, the three-dimensional surface structure plays a fundamental role that various methods are expected to modulate in a number of ways, one most promising of which is the use of different types of radiation. In the present manuscript, we demonstrate in a calvarial defect model, that treatment with ultraviolet irradiation allows modification of the osteoconductive characteristics in a biomaterial formed by gelatin and chitosan, together with the inclusion of hydroxyapatite and titanium oxide nanoparticles.


2022 ◽  
Vol 23 (1) ◽  
pp. 558
Author(s):  
Chih-Hsiang Fang ◽  
Chung-Kai Sun ◽  
Yi-Wen Lin ◽  
Min-Chih Hung ◽  
Hung-Ying Lin ◽  
...  

In this study, we fabricated gelatin/nano-hydroxyapatite/metformin scaffold (GHMS) and compared its effectiveness in bone regeneration with extraction-only, Sinbone, and Bio-Oss Collagen® groups in a critical size rat alveolar bone defect model. GHMS was synthesized by co-precipitating calcium hydroxide and orthophosphoric acid within gelatin solution, incorporating metformin, and cross-linked by microbial transglutaminase. The morphology, characterization, and biocompatibility of scaffold were examined. The in vitro effects of GHMS on osteogenic gene and protein expressions were evaluated. In vivo bone formation was assessed in a critical size rat alveolar bone defect model with micro-computed tomography and histological examination by comparing GHMS with extraction-only, Sinbone, and Bio-Oss Collagen®. The synthesized GHMS had a highly interconnected porous structure with a mean pore size of 81.85 ± 13.8 µm. GHMS exhibited good biocompatibility; promoted ALPL, RUNX2, SP7, BGLAP, SPARC and Col1a1 gene expressions; and upregulated the synthesis of osteogenic proteins, including osteonectin, osteocalcin, and collagen type I. In critical size rat alveolar bone defects, GHMS showed superior bone regeneration compared to extraction-only, Sinbone, and Bio-Oss Collagen® groups as manifested by greater alveolar ridge preservation, while more bone formation with a lower percentage of connective tissue and residual scaffold at the defect sites grafted with GHMS in histological staining. The GHMS presented in this study may be used as a potential bone substitute to regenerate alveolar bone. The good biocompatibility, relatively fast degradation, interconnected pores allowing vascularization, and higher bioactivity properties of the components of the GHMS (gelatin, nHA, and metformin) may contribute to direct osteogenesis.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 212
Author(s):  
Young Eun Park ◽  
Kaushik Chandramouli ◽  
Maureen Watson ◽  
Mark Zhu ◽  
Karen E. Callon ◽  
...  

Lactoferrin (LF) is a multifunctional milk glycoprotein that promotes bone regeneration. Local delivery of LF at the bone defect site is a promising approach for enhancement of bone regeneration, but efficient systems for sustained local delivery are still largely missing. The aim of this study was to investigate the potential of the poloxamers for sustained delivery of LF to enhance local bone regeneration. The developed LF/poloxamer formulations were liquid at room temperature (20 °C) transforming to a sustained releasing gel depot at body temperature (37 °C). In vitro release studies demonstrated an initial burst release (~50%), followed by slower release of LF for up to 72 h. Poloxamer, with and without LF, increased osteoblast viability at 72 h (p < 0.05) compared to control, and the immune response from THP-1 cells was mild when compared to the suture material. In rat calvarial defects, the LF/poloxamer group had lower bone volume than the controls (p = 0.0435). No difference was observed in tissue mineral density and lower bone defect coverage scores (p = 0.0267) at 12 weeks after surgery. In conclusion, LF/poloxamer formulations support cell viability and do not induce an unfavourable immune response; however, LF delivery via the current formulation of LF200/poloxamer gel did not demonstrate enhanced bone regeneration and was not compatible with the rat calvarial defect model.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zhou Fang ◽  
Jian-Long Zou

Collagen VI (COL6) in the microenvironment was recently identified as an extracellular signal that bears the function of promoting orderly axon bundle formation. However, the large molecular weight of COL6 (≈2,000 kDa) limits its production and clinical application. It remains unclear whether the smaller subunit α chains of COL6 can exert axon bundling and ordering effects independently. Herein, based on a dorsal root ganglion (DRG) ex vivo model, the contributions of three main COL6 α chains on orderly nerve bundle formation were analyzed, and COL6 α2 showed the largest contribution weight. A recombinant COL6 α2 chain was produced and demonstrated to promote the formation of orderly axon bundles through the NCAM1-mediated pathway. The addition of COL6 α2 in conventional hydrogel triggered orderly nerve regeneration in a rat sciatic nerve defect model. Immunogenicity assessment showed weaker immunogenicity of COL6 α2 compared to that of the COL6 complex. These findings suggest that recombinant COL6 α2 is a promising material for orderly nerve regeneration.


Sign in / Sign up

Export Citation Format

Share Document