bone formation
Recently Published Documents


TOTAL DOCUMENTS

8232
(FIVE YEARS 1529)

H-INDEX

184
(FIVE YEARS 15)

2022 ◽  
Vol 146 ◽  
pp. 112467
Author(s):  
Radoslaw Piotr Radzki ◽  
Marek Bienko ◽  
Dariusz Wolski ◽  
Tomasz Oniszczuk ◽  
Agnieszka Radzka-Pogoda ◽  
...  

2022 ◽  
Vol 36 (2) ◽  
Author(s):  
Lingyan Ren ◽  
Fanchun Zeng ◽  
Jiezhong Deng ◽  
Yun Bai ◽  
Kun Chen ◽  
...  
Keyword(s):  

2022 ◽  
Vol 23 (2) ◽  
pp. 859
Author(s):  
Ihsan Hammoura ◽  
Renee H. Fiechter ◽  
Shaughn H. Bryant ◽  
Susan Westmoreland ◽  
Gillian Kingsbury ◽  
...  

The tumor necrosis factor (TNF) and IL-23/IL-17 axes are the main therapeutic targets in spondyloarthritis. Despite the clinical efficacy of blocking either pathway, monotherapy does not induce remission in all patients and its effect on new bone formation remains unclear. We aimed to study the effect of TNF and IL-17A dual inhibition on clinical disease and structural damage using the HLA-B27/human β2-microglobulin transgenic rat model of SpA. Immunized rats were randomized according to arthritis severity, 1 week after arthritis incidence reached 50%, to be treated twice weekly for a period of 5 weeks with either a dual blockade therapy of an anti-TNF antibody and an anti-IL-17A antibody, a single therapy of either antibody, or PBS as vehicle control. Treatment-blinded observers assessed inflammation and structural damage clinically, histologically and by micro-CT imaging. Both single therapies as well as TNF and IL-17A dual blockade therapy reduced clinical spondylitis and peripheral arthritis effectively and similarly. Clinical improvement was confirmed for all treatments by a reduction of histological inflammation and pannus formation (p < 0.05) at the caudal spine. All treatments showed an improvement of structural changes at the axial and peripheral joints on micro-CT imaging, with a significant decrease for roughness (p < 0.05), which reflects both erosion and new bone formation, at the level of the caudal spine. The effect of dual blockade therapy on new bone formation was more prominent at the axial than the peripheral level. Collectively, our study showed that dual blockade therapy significantly reduces inflammation and structural changes, including new bone formation. However, we could not confirm a more pronounced effect of dual inhibition compared to single inhibition.


Author(s):  
Lucy Y. Tao ◽  
Katarzyna B. Łagosz-Ćwik ◽  
Jolanda M.A. Hogervorst ◽  
Ton Schoenmaker ◽  
Aleksander M. Grabiec ◽  
...  

Diabetes and periodontitis are comorbidities and may share common pathways. Several reports indicate that diabetes medication metformin may be beneficial for the periodontal status of periodontitis patients. Further research using appropriate cell systems of the periodontium, the tissue that surrounds teeth may reveal the possible mechanism. Periodontal ligament fibroblasts anchor teeth in bone and play a role in the onset of both alveolar bone formation and degradation, the latter by inducing osteoclast formation from adherent precursor cells. Therefore, a cell model including this type of cells is ideal to study the influence of metformin on both processes. We hypothesize that metformin will enhance bone formation, as described for osteoblasts, whereas the effects of metformin on osteoclast formation is yet undetermined. Periodontal ligament fibroblasts were cultured in the presence of osteogenic medium and 0.2 or 1 mM metformin. The influence of metformin on osteoclast formation was first studied in PDLF cultures supplemented with peripheral blood leukocytes, containing osteoclast precursors. Finally, the effect of metformin on osteoclast precursors was studied in cultures of CD14+ monocytes that were stimulated with M-CSF and receptor activator of Nf-κB ligand (RANKL). No effects of metformin were observed on osteogenesis: not on alkaline phosphatase activity, Alizarin red deposition, nor on the expression of osteogenic markers RUNX-2, Collagen I and Osteonectin. Metformin inhibited osteoclast formation and accordingly downregulated the genes involved in osteoclastogenesis: RANKL, macrophage colony stimulating factor (M-CSF) and osteoclast fusion gene DC-STAMP. Osteoclast formation on both plastic and bone as well as bone resorption was inhibited by metformin in M-CSF and RANKL stimulated monocyte cultures, probably by reduction of RANK expression. The present study unraveling the positive effect of metformin in periodontitis patients at the cellular level, indicates that metformin inhibits osteoclast formation and activity, both when orchestrated by periodontal ligament fibroblasts and in cytokine driven osteoclast formation assays. The results indicate that metformin could have a systemic beneficiary effect on bone by inhibiting osteoclast formation and activity.


2022 ◽  
Author(s):  
Leyao Shen ◽  
Yilin Yu ◽  
Yunji Zhou ◽  
Shondra M Pruett-Miller ◽  
Guo-Fang Zhang ◽  
...  

Cellular differentiation is associated with the acquisition of a unique protein signature which is essential to attain the ultimate cellular function and activity of the differentiated cell. This is predicted to result in unique biosynthetic demands that arise during differentiation. Using a bioinformatic approach, we discovered osteoblast differentiation is associated with increased demand for the amino acid proline. When compared to other differentiated cells, osteoblast-associated proteins including RUNX2, OSX, OCN and COL1A1 are significantly enriched in proline. Using a genetic and metabolomic approach, we demonstrate that the neutral amino acid transporter SLC38A2 acts cell autonomously to provide proline to facilitate the efficient synthesis of proline-rich osteoblast proteins. Genetic ablation of SLC38A2 in osteoblasts limits both osteoblast differentiation and bone formation in mice. Mechanistically, proline is primarily incorporated into nascent protein with little metabolism observed. Collectively, these data highlight a requirement for proline in fulfilling the unique biosynthetic requirements that arise during osteoblast differentiation and bone formation.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 212
Author(s):  
Yuhe Zhu ◽  
Nanjue Cao ◽  
Yue Zhang ◽  
Guangxiu Cao ◽  
Chunping Hao ◽  
...  

Nano-hydroxyapatite/collagen (nHAC) is a new type of bone tissue engineering scaffold material. To speed up the new bone formation of nHAC, this study used concentrated growth factor (CGF) and nHAC in combination to repair rabbit mandibular defects. nHAC/CGF and nHAC were implanted into rabbit mandibles, and X-ray, Micro-CT, HE and Masson staining, immunohistochemical staining and biomechanical testing were performed at 8, 16 and 24 weeks after surgery. The results showed that as the material degraded, the rate of new bone formation in the nHAC/CGF group was better than that in the nHAC group. The results of the HE and Masson staining showed that the bone continuity or maturity of the nHAC/CGF group was better than that of the nHAC group. Immunohistochemical staining showed that OCN expression gradually increased with time. The nHAC/CGF group showed significantly higher BMP2 than the nHAC group at 8 weeks and the difference gradually decreased with time. The biomechanical test showed that the compressive strength and elastic modulus of the nHAC/CGF group were higher than those of the nHAC group. The results suggest that nHAC/CGF materials can promote new bone formation, providing new ideas for the application of bone tissue engineering scaffold materials in oral clinics.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ziang Xie ◽  
Lei Hou ◽  
Shuying Shen ◽  
Yizheng Wu ◽  
Jian Wang ◽  
...  

AbstractMechanical force is critical for the development and remodeling of bone. Here we report that mechanical force regulates the production of the metabolite asymmetric dimethylarginine (ADMA) via regulating the hydrolytic enzyme dimethylarginine dimethylaminohydrolase 1 (Ddah1) expression in osteoblasts. The presence of -394 4 N del/ins polymorphism of Ddah1 and higher serum ADMA concentration are negatively associated with bone mineral density. Global or osteoblast-specific deletion of Ddah1 leads to increased ADMA level but reduced bone formation. Further molecular study unveils that mechanical stimulation enhances TAZ/SMAD4-induced Ddah1 transcription. Deletion of Ddah1 in osteoblast-lineage cells fails to respond to mechanical stimulus-associated bone formation. Taken together, the study reveals mechanical force is capable of down-regulating ADMA to enhance bone formation.


2022 ◽  
pp. 002203452110625
Author(s):  
K. Wang ◽  
C. Xu ◽  
X. Xie ◽  
Y. Jing ◽  
P.J. Chen ◽  
...  

Wnt–β-catenin signaling plays a key role in orthodontic tooth movement (OTM), a common clinical practice for malocclusion correction. However, its targeted periodontal ligament (PDL) progenitor cells remain largely unclear. In this study, we first showed a synchronized increase in Wnt–β-catenin levels and Axin2+ PDL progenitor cell numbers during OTM using immunostaining of β-catenin in wild-type mice and X-gal staining in the Axin2-LacZ knock-in line. Next, we demonstrated time-dependent increases in Axin2+ PDL progenitors and their progeny cell numbers within PDL and alveolar bones during OTM using a one-time tamoxifen-induced Axin2 tracing line ( Axin2CreERT2/+; R26RtdTomato/+). Coimmunostaining images displayed both early and late bone markers (such as RUNX2 and DMP1) in the Axin2Lin PDL cells. Conversely, ablation of Axin2+ PDL cells via one-time tamoxifen-induced diphtheria toxin subunit A (DTA) led to a drastic decrease in osteogenic activity (as reflected by alkaline phosphatase) in PDL and alveolar bone. There was also a decrease in new bone mass and a significant reduction in the mineral apposition rate on both the control side (to a moderate degree) and the OTM side (to a severe degree). Thus, we conclude that the Axin2+ PDL cells (the Wnt-targeted key cells) are highly sensitive to orthodontic tension force and play a critical role in OTM-induced PDL expansion and alveolar bone formation. Future drug development targeting the Axin2+ PDL progenitor cells may accelerate alveolar bone formation during orthodontic treatment.


Bone Research ◽  
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Junxin Lin ◽  
Yuwei Yang ◽  
Wenyan Zhou ◽  
Chao Dai ◽  
Xiao Chen ◽  
...  

AbstractTendon heterotopic ossification (HO) is characterized by bone formation inside tendon tissue, which severely debilitates people in their daily life. Current therapies fail to promote functional tissue repair largely due to our limited understanding of HO pathogenesis. Here, we investigate the pathological mechanism and propose a potential treatment method for HO. Immunofluorescence assays showed that the Mohawk (MKX) expression level was decreased in human tendon HO tissue, coinciding with spontaneous HO and the upregulated expression of osteochondrogenic and angiogenic genes in the tendons of Mkx−/− mice. Single-cell RNA sequencing analyses of wild-type and Mkx−/− tendons identified three cell types and revealed the excessive activation of osteochondrogenic genes during the tenogenesis of Mkx−/− tendon cells. Single-cell analysis revealed that the gene expression program of angiogenesis, which is strongly associated with bone formation, was activated in all cell types during HO. Moreover, inhibition of angiogenesis by the small-molecule inhibitor BIBF1120 attenuated bone formation and angiogenesis in the Achilles tendons of both Mkx mutant mice and a rat traumatic model of HO. These findings provide new insights into the cellular mechanisms of tendon HO and highlight the inhibition of angiogenesis with BIBF1120 as a potential treatment strategy for HO.


Sign in / Sign up

Export Citation Format

Share Document