scholarly journals Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance

Materials ◽  
2015 ◽  
Vol 8 (12) ◽  
pp. 7997-8008 ◽  
Author(s):  
Carmelo Lo Vecchio ◽  
Cinthia Alegre ◽  
David Sebastián ◽  
Alessandro Stassi ◽  
Antonino Aricò ◽  
...  
Author(s):  
A. Mary Remona ◽  
K. L. N. Phani

Carbon-supported platinum and Pt–Pd alloy electrocatalysts with different Pt/Pd atomic ratios were synthesized by a microemulsion method at room temperature (metal loading is 10 wt %). The Pt–Pd/C bimetallic catalysts showed a single-phase fcc structure and the mean particle size of Pt–Pd/C catalysts was found to be lower than that of Pt/C. The methanol-tolerant studies of the catalysts were carried out by activity evaluation of oxygen reduction reaction (ORR) on Pt–Pd catalysts using a rotating disk electrode (RDE). The studies indicated that the order of methanol tolerance was found to be PtPd3/C>PtPd/C>Pt3Pd/C. The oxygen reduction activities of all Pt–Pd/C were considerably larger than that of Pt/C with respect to onset and overpotential values. The Pd-loaded catalysts shift the onset potential of ORR by 125 mVMSE, 53 mVMSE, and 41 mVMSE to less cathodic potentials for Pt3Pd/C, PtPd/C, and PtPd3/C, respectively, with reference to Pt/C and the Pt3Pd/C catalyst showed greater shift in the onset value than the other PtPd catalysts reported in literature. Moreover, the Pt–Pd/C catalysts exhibited much higher methanol tolerance during ORR than the Pt/C, assessing that these catalysts may function as a methanol-tolerant cathode catalysts in a direct methanol fuel cell.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 955 ◽  
Author(s):  
Jing Liu ◽  
Jiao Yin ◽  
Bo Feng ◽  
Tao Xu ◽  
Fu Wang

The Pt particles within diameters of 1–3 nm known as Pt nanoclusters (NCs) are widely considered to be satisfactory oxygen reduction reaction (ORR) catalysts due to higher electrocatalytic performance and cost effectiveness. However, the utilization of such smaller Pt NCs is always limited by the synthesis strategies, stability and methanol tolerance of Pt. Herein, unprotected Pt NCs (~2.2 nm) dispersed on carbon nanotubes (CNTs) were prepared via a modified top-down approach using liquid Li as a solvent to break down the bulk Pt. Compared with the commercial Pt/C, the resultant Pt NCs/CNTs catalyst (Pt loading: 10 wt.%) exhibited more desirable ORR catalytic performance in 0.1 M HClO4. The specific activity (SA) and mass activity (MA) at 0.9 V for ORR over Pt NCs/CNTs were 2.5 and 3.2 times higher than those over the commercial Pt/C (Pt loading: 20 wt.%). Meanwhile, the Pt NCs/CNTs catalyst demonstrated more satisfactory stability and methanol tolerance. Compared with the obvious loss (~69%) of commercial Pt/C, only a slight current decrease (~10%) was observed for Pt NCs/CNTs after the chronoamperometric measurement for 2 × 104 s. Hence, the as-prepared Pt NCs/CNTs material displays great potential as a practical ORR catalyst.


2008 ◽  
Vol 182 (1) ◽  
pp. 91-94 ◽  
Author(s):  
Lifeng Cheng ◽  
Zhonghua Zhang ◽  
Wenxin Niu ◽  
Guobao Xu ◽  
Liande Zhu

Sign in / Sign up

Export Citation Format

Share Document