onset potential
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 174)

H-INDEX

35
(FIVE YEARS 10)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Yonis Fornazier Filho ◽  
Ana Caroliny Carvalho da Cruz ◽  
Rolando Pedicini ◽  
José Ricardo Cezar Salgado ◽  
Rodrigo Vieira Rodrigues ◽  
...  

An efficient ethanol oxidation reaction (EOR) is required to enhance energy production in alcohol-based fuel cells. The use of bimetallic catalysts promises decreasing reliance on platinum group metal (PGM) electrocatalysts by minimizing the use of these expensive materials in the overall electrocatalyst composition. In this article, an alternative method of bimetallic electrocatalyst synthesis based on the use of polymeric precursors is explored. PdAg/C electrocatalysts were synthesized by thermal decomposition of polymeric precursors and used as the anode electrocatalyst for EOR. Different compositions, including pristine Pd/C and Ag/C, as well as bimetallic Pd80Ag20/C, and Pd60Ag40/C electrocatalysts, were evaluated. Synthesized catalysts were characterized, and electrochemical activity evaluated. X-ray diffraction showed a notable change at diffraction peak values for Pd80Ag20/C and Pd60Ag40/C electrocatalysts, suggesting alloying (solid solution) and smaller crystallite sizes for Pd60Ag40/C. In a thermogravimetric analysis, the electrocatalyst Pd60Ag40/C presented changes in the profile of the curves compared to the other electrocatalysts. In the cyclic voltammetry results for EOR in alkaline medium, Pd60Ag40/C presented a more negative onset potential, a higher current density at the oxidation peak, and a larger electrically active area. Chronoamperometry tests indicated a lower poisoning rate for Pd60Ag40/C, a fact also observed in the CO-stripping voltammetry analysis due to its low onset potential. As the best performing electrocatalyst, Pd60Ag40/C has a lower mass of Pd (a noble and expensive metal) in its composition. It can be inferred that this bimetallic composition can contribute to decreasing the amount of Pd required while increasing the fuel cell performance and expected life. PdAg-type electrocatalysts can provide an economically feasible alternative to pure PGM-electrocatalysts for use as the anode in EOR in fuel cells.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
V. Selvaraj ◽  
R. ThamilMagal ◽  
V. Andal ◽  
K. Arunkumar ◽  
Sivaraj Murugan

In this work, graphene carbon sheets (BGS) were prepared from writing paper and lemon peel, and its polymer composite has a higher surface area compared with the existing Vulcan carbon. Further, the use of lead as a promoter for the oxidation of alcohol and CO on platinum-supported poly(amine-terminated cyclophosphazene-co-cyclophosphazene)-biobased graphene sheet (Poly(AFCP-co-CP)-BGS) composite was demonstrated. The size, phase morphology, and distribution of metal nanoparticles on Poly(AFCP-co-CP)-BGS composite as well as the formation of composite based catalysts were confirmed from TEM, XRD, and FTIR studies. The catalytic activity and stability of the prepared catalysts were tested and compared to methanol, ethylene glycol, glycerol, and CO in 0.5 M KOH solution. The results conclude that the lead-doped Pt/Poly(AFCP-co-CP)-BGS catalyst shows higher oxidation current with respect to onset potential and lower I f / I r ratio for alcohol as well as CO oxidation. In addition, Pt-Pb/Poly(AFCP-co-CP)-BGS catalyst was checked for direct alkaline fuel cells and proved as a potent anode catalyst in alkaline medium for real-time fuel battery applications. In addition, Poly(AFCP-co-CP)-BGS composite also promotes the catalytic reaction compared to Poly(AFCP-co-CP) and BGS supports as noticed from methanol oxidation in alkaline medium. The surface area of the prepared supporting material is 750.72 m2g-1, which is higher than the activated carbon (250.12m2g-1). So, the prepared Poly(AFCP-co-CP)-BGS composite is a potent support for metal deposition, electrooxidation, and single stack fuel cell constructions.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Poshan Kumar Reddy Kuppam ◽  
K. M. M. D. K. Kimbulapitiya ◽  
Srikanth Vuppala ◽  
Kuangye Wang ◽  
G. Phaneendra Reddy ◽  
...  

Replacing precious metals with low-cost metals is the best solution for large scale production. Copper is known for its excellent conductivity and thermal management applications. When it comes to hydrogen evolution reaction, it is highly unstable, especially in KOH solution. In this paper, we approached a simple method to reduce corrosion and improve the performance by depositing nickel-molybdenum oxide and nickel on copper substrates and the achieved tafel slopes of 115 mV/dec and 117 mV/dec at 10 mA/cm2. While at first, molybdenum oxide coated samples showed better performance after 100 cycles of stability tests, the onset potential rapidly changed. Cu–Ni, which was deposited using the electron gun evaporation (e-gun), has shown better performance with 0.28 V at 10 mA/cm2 and led to stability after 100 cycles. Our results show that when copper is alloyed with nickel, it acts as a promising hydrogen evolution reaction (HER) catalyst.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Vasu Prasad Prasadam ◽  
Ali Margot Huerta Flores ◽  
Jean-Nicolas Audinot ◽  
Naoufal Bahlawane

Solar-driven water splitting is a promising route toward clean H2 energy and the photoelectrochemical approach attracts a strong interest. The oxygen evolution reaction is widely accepted as the performance limiting stage in this technology, which emphasizes the need of innovative anode materials. Metal oxide semiconductors are relevant in this respect owing to their cost-effectiveness and broad availability. The combination of chemical vapor deposition and atomic layer deposition was implemented in this study for the synthesis of randomly oriented CNT-ZnO core-shell nanostructures forming an adhering porous coating. Relative to a directly coated ZnO on Si, the porous structure enables a high interface area with the electrolyte and a resulting 458% increase of the photocurrent density under simulated solar light irradiation. The photoelectrochemical characterization correlates this performance to the effective electrons withdrawing along the carbon nanotubes (CNTs), and the resulting decrease of the onset potential. In terms of durability, the CNT-ZnO core–shell structure features an enhanced photo-corrosion stability for 8 h under illumination and with a voltage bias.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Jun-Woo Park ◽  
Jeongsuk Seo

The high activity of non-platinum electrocatalysts for oxygen reduction reaction (ORR) in alkaline media is necessary for applications in energy conversion devices such as fuel cells and metal-air batteries. Herein, we present the electrocatalytic activity of TaOx/carbon black (CB) nanoparticles for the ORR in an alkaline atmosphere as well as in an acidic electrolyte. Ultrafine TaOx nanoparticles 1–2 nm in size and uniformly dispersed on CB supports were prepared by potentiostatic electrodeposition in a nonaqueous electrolyte and subsequent annealing treatment in an H2 flow. The TaOx/CB nanoparticles largely catalyzed the ORR with an onset potential of 1.03 VRHE in an O2-saturated 0.1 M KOH solution comparable to that of a commercial Pt/CB catalyst. ORR activity was also observed in 0.1 M H2SO4 solution. According to the rotating ring disk electrode measurement results, the oxide nanoparticles partly produced H2O2 during the ORR in 0.1 M KOH, and the ORR process was dominated by both the two- and four-electron reductions of oxygen in a diffusion-limited potential region. The Tafel slope of −120 mV dec−1 in low and high current densities revealed the surface stability of the oxide nanoparticles during the ORR. Therefore, these results demonstrated that the TaOx/CB nanoparticles were electroactive for the ORR in both acidic and alkaline electrolytes.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1525
Author(s):  
Williane da Silva Freitas ◽  
Pedro Pablo Machado Pico ◽  
Alessandra D’Epifanio ◽  
Barbara Mecheri

The development of electrocatalysts for energy conversion and storage devices is of paramount importance to promote sustainable development. Among the different families of materials, catalysts based on transition metals supported on a nitrogen-containing carbon matrix have been found to be effective catalysts toward oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) with high potential to replace conventional precious metal-based catalysts. In this work, we developed a facile synthesis strategy to obtain a Fe-N-C bifunctional ORR/HER catalysts, involving wet impregnation and pyrolysis steps. Iron (II) acetate and imidazole were used as iron and nitrogen sources, respectively, and functionalized carbon black pearls were used as conductive support. The bifunctional performance of the Fe-N-C catalyst toward ORR and HER was investigated by cyclic voltammetry, rotating ring disk electrode experiments, and electrochemical impedance spectroscopy in alkaline environment. ORR onset potential and half-wave potential were 0.95 V and 0.86 V, respectively, indicating a competitive performance in comparison with the commercial platinum-based catalyst. In addition, Fe-N-C had also a good HER activity, with an overpotential of 478 mV @10 mAcm−2 and Tafel slope of 133 mVdec−1, demonstrating its activity as bifunctional catalyst in energy conversion and storage devices, such as alkaline microbial fuel cell and microbial electrolysis cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3382
Author(s):  
Jinxin Wan ◽  
Zhenyuan Liu ◽  
Xiaoyu Yang ◽  
Peng Cheng ◽  
Chao Yan

It is important to develop cost-efficient electrocatalysts used in the oxygen reduction reaction (ORR) for widespread applications in fuel cells. Palladium (Pd) is a promising catalyst, due to its more abundant reserves and lower price than platinum (Pt), and doping an earth-abundant 3d-transition metal M into Pd to form Pd–M bimetallic alloys may not only further reduce the use of expensive Pd but also promote the electrocatalytic performance of ORR, owing to the synergistic effect between Pd and M. Here we report a cyanogel-derived synthesis of PdFe alloys with porous nanostructure via a simple coinstantaneous reduction reaction by using K2PdIICl4/K4FeII(CN)6 cyanogel as precursor. The synthesized PdFe alloys possess hydrangea-like morphology and porous nanostructure, which are beneficial to the electrochemical performance in ORR. The onset potential of the porous PdFe nanohydrangeas is determined to be 0.988 V, which is much more positive than that of commercial Pt/C catalyst (0.976 V) and Pd black catalyst (0.964 V). Resulting from the unique structural advantages and synergetic effect between bimetals, the synthesized PdFe nanohydrangeas with porous structure have outstanding electrocatalytic activity and stability for ORR, compared with the commercial Pd black and Pt/C.


2021 ◽  
Author(s):  
Anand Mohan Verma ◽  
Laura Laverdure ◽  
Marko Melander ◽  
Karoliina Honkala

Electrocatalytic oxidation of glycerol (EOG) is an attractive approach to convert surplus glycerol to value-added products. Experiments have shown that EOG activity and selectivity depend on the electrocatalyst, but also on the electrode potential, the pH, and the electrolyte. For broadly employed gold (Au) electrocatalysts, experiments have demonstrated high EOG activity under alkaline conditions with glyceric acid as a primary product, whereas under acidic and neutral conditions Au is almost inactive producing only small amounts of dihydroxyacetone. In the present computational work, we have performed an extensive mechanistic study to understand the pH- and potential- dependency of Au-catalyzed EOG. Our results show that activity and selectivity are controlled by the presence of surface-bound hydroxyl groups. Under alkaline conditions and close to the experimental onset potential, modest OH coverage is preferred accord- ing to our constant potential calculations. This indicates that both Au(OH)ads and Au can be active sites and they cooperatively facilitate the thermodynamically and kinetically feasible formation of glyceric acid thus explaining the experimentally observed high activity and selectivity. Under acidic conditions, hydroxide coverage is negligi- ble and the dihydroxyacetone emerges as the favored product. Calculations predict slow reaction kinetics, however, which explains the low activity and selectivity towards dihydroxyacetone reported in experiments. Overall, our findings highlight that com- putational studies should explicitly account for pH and coverage effects under alkaline conditions for electrocatalytic oxidation reactions to reliably predict electrocatalytic behaviour.


2021 ◽  
Author(s):  
Bing Zhang ◽  
Hele Guo ◽  
Longsheng Zhang ◽  
Xu Zhang ◽  
Chao Zhang ◽  
...  

Abstract The exploration of a noble-metal-free and nitrogen-doped carbon (M-N/C) composite electrocatalyst for the oxygen reduction reaction (ORR) remains a great challenge. The activities of the M-N/C composite electrocatalysts are mainly affected by the metal active sites, pyridinic nitrogen, and graphitic nitrogen. In the present work, the iron-coordinated self-assembly is proposed for the preparation of iron-chelating pyridine nitrogen-rich coordinated nanosheet (IPNCN) composites as an electrocatalyst. Due to the highly conjugated structure of the IPNCN precursor, the pyridine nitrogen elements at both ends of the tetrapyrido [3,2-a:2',3'-c:3'',2''-h:2''',3'''-j] phenazine (TP) provide the multiple ligands, and the coordination interactions between the irons and the pyridine nitrogen further improve the thermodynamic stability, where the metal active sites and nitrogen elements are uniformly distributed in the whole structure. The resultant IPNCN composites exhibit excellent ORR performance with an onset potential of 0.93 V and a half potential of 0.84 V. Furthermore, the IPNCN composite electrocatalysts show the higher methanol resistance and electrochemical durability than the commercial Pt/C catalysts. It could be convinced that the as-designed IPNCN composite catalysts would be a promising alternative to the noble metal Pt-based catalysts in the practical applications.


Sign in / Sign up

Export Citation Format

Share Document