Minimum Number of Colours to Avoid k-Term Monochromatic Arithmetic Progressions
Keyword(s):
By recalling van der Waerden theorem, there exists a least a positive integer w=w(k;r) such that for any n≥w, every r-colouring of [1,n] admits a monochromatic k-term arithmetic progression. Let k≥2 and rk(n) denote the minimum number of colour required so that there exists a rk(n)-colouring of [1,n] that avoids any monochromatic k-term arithmetic progression. In this paper, we give necessary and sufficient conditions for rk(n+1)=rk(n). We also show that rk(n)=2 for all k≤n≤2(k−1)2 and give an upper bound for rp(pm) for any prime p≥3 and integer m≥2.
2021 ◽
Vol 14
(2)
◽
pp. 380-395
2018 ◽
Vol 11
(1)
◽
pp. 35
2020 ◽
Vol 24
(2)
◽
pp. 139
1975 ◽
Vol 18
(1)
◽
pp. 155-156
◽
2010 ◽
Vol 75
(8)
◽
pp. 1093-1098
◽
1959 ◽
Vol 11
◽
pp. 440-451
◽
1986 ◽
Vol 9
(4)
◽
pp. 801-806
◽
2020 ◽
Vol 65
(4)
◽
pp. 588-596