scholarly journals Confidence Intervals for Mean and Difference between Means of Normal Distributions with Unknown Coefficients of Variation

Mathematics ◽  
2017 ◽  
Vol 5 (3) ◽  
pp. 39 ◽  
Author(s):  
Warisa Thangjai ◽  
Suparat Niwitpong ◽  
Sa-Aat Niwitpong
2021 ◽  
Vol 5 (2) ◽  
pp. 139-154
Author(s):  
Warisa Thangjai ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

Herein, we propose the Bayesian approach for constructing the confidence intervals for both the coefficient of variation of a log-normal distribution and the difference between the coefficients of variation of two log-normal distributions. For the first case, the Bayesian approach was compared with large-sample, Chi-squared, and approximate fiducial approaches via Monte Carlo simulation. For the second case, the Bayesian approach was compared with the method of variance estimates recovery (MOVER), modified MOVER, and approximate fiducial approaches using Monte Carlo simulation. The results show that the Bayesian approach provided the best approach for constructing the confidence intervals for both the coefficient of variation of a log-normal distribution and the difference between the coefficients of variation of two log-normal distributions. To illustrate the performances of the confidence limit construction approaches with real data, they were applied to analyze real PM10 datasets from the Nan and Chiang Mai provinces in Thailand, the results of which are in agreement with the simulation results. Doi: 10.28991/esj-2021-01264 Full Text: PDF


2021 ◽  
Vol 50 (1) ◽  
pp. 261-278
Author(s):  
Warisa Thangjai ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

The coefficient of variation is widely used as a measure of data precision. Confidence intervals for a single coefficient of variation when the data follow a normal distribution that is symmetrical and the difference between the coefficients of variation of two normal populations are considered in this paper. First, the confidence intervals for the coefficient of variation of a normal distribution are obtained with adjusted generalized confidence interval (adjusted GCI), computational, Bayesian, and two adjusted Bayesian approaches. These approaches are compared with existing ones comprising two approximately unbiased estimators, the method of variance estimates recovery (MOVER) and generalized confidence interval (GCI). Second, the confidence intervals for the difference between the coefficients of variation of two normal distributions are proposed using the same approaches, the performances of which are then compared with the existing approaches. The highest posterior density interval was used to estimate the Bayesian confidence interval. Monte Carlo simulation was used to assess the performance of the confidence intervals. The results of the simulation studies demonstrate that the Bayesian and two adjusted Bayesian approaches were more accurate and better than the others in terms of coverage probabilities and average lengths in both scenarios. Finally, the performances of all of the approaches for both scenarios are illustrated via an empirical study with two real-data examples.


Sign in / Sign up

Export Citation Format

Share Document