scholarly journals A New Parameter Estimator for the Generalized Pareto Distribution under the Peaks over Threshold Framework

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 406 ◽  
Author(s):  
Xu Zhao ◽  
Zhongxian Zhang ◽  
Weihu Cheng ◽  
Pengyue Zhang

Techniques used to analyze exceedances over a high threshold are in great demand for research in economics, environmental science, and other fields. The generalized Pareto distribution (GPD) has been widely used to fit observations exceeding the tail threshold in the peaks over threshold (POT) framework. Parameter estimation and threshold selection are two critical issues for threshold-based GPD inference. In this work, we propose a new GPD-based estimation approach by combining the method of moments and likelihood moment techniques based on the least squares concept, in which the shape and scale parameters of the GPD can be simultaneously estimated. To analyze extreme data, the proposed approach estimates the parameters by minimizing the sum of squared deviations between the theoretical GPD function and its expectation. Additionally, we introduce a recently developed stopping rule to choose the suitable threshold above which the GPD asymptotically fits the exceedances. Simulation studies show that the proposed approach performs better or similar to existing approaches, in terms of bias and the mean square error, in estimating the shape parameter. In addition, the performance of three threshold selection procedures is assessed by estimating the value-at-risk (VaR) of the GPD. Finally, we illustrate the utilization of the proposed method by analyzing air pollution data. In this analysis, we also provide a detailed guide regarding threshold selection.

2012 ◽  
Vol 22 (2) ◽  
pp. 297-311 ◽  
Author(s):  
Jelena Jockovic

Generalized Pareto distributions (GPD) are widely used for modeling excesses over high thresholds (within the framework of the POT-approach to modeling extremes). The aim of the paper is to give the review of the classical techniques for estimating GPD quantiles, and to apply these methods in finance - to estimate the Value-at-Risk (VaR) parameter, and discuss certain difficulties related to this subject.


2012 ◽  
Vol 1 (33) ◽  
pp. 42
Author(s):  
Pietro Bernardara ◽  
Franck Mazas ◽  
Jérôme Weiss ◽  
Marc Andreewsky ◽  
Xavier Kergadallan ◽  
...  

In the general framework of over-threshold modelling (OTM) for estimating extreme values of met-ocean variables, such as waves, surges or water levels, the threshold selection logically requires two steps: the physical declustering of time series of the variable in order to obtain samples of independent and identically distributed data then the application of the extreme value theory, which predicts the convergence of the upper part of the sample toward the Generalized Pareto Distribution. These two steps were often merged and confused in the past. A clear framework for distinguishing them is presented here. A review of the methods available in literature to carry out these two steps is given here together with the illustration of two simple and practical examples.


2019 ◽  
Vol 17 (4) ◽  
pp. 56
Author(s):  
Jaime Enrique Lincovil ◽  
Chang Chiann

<p>Evaluating forecasts of risk measures, such as value–at–risk (VaR) and expected shortfall (ES), is an important process for financial institutions. Backtesting procedures were introduced to assess the efficiency of these forecasts. In this paper, we compare the empirical power of new classes of backtesting, for VaR and ES, from the statistical literature. Further, we employ these procedures to evaluate the efficiency of the forecasts generated by both the Historical Simulation method and two methods based on the Generalized Pareto Distribution. To evaluate VaR forecasts, the empirical power of the Geometric–VaR class of backtesting was, in general, higher than that of other tests in the simulated scenarios. This supports the advantages of using defined time periods and covariates in the test procedures. On the other hand, to evaluate ES forecasts, backtesting methods based on the conditional distribution of returns to the VaR performed well with large sample sizes. Additionally, we show that the method based on the generalized Pareto distribution using durations and covariates has optimal performance in forecasts of VaR and ES, according to backtesting.</p>


Sign in / Sign up

Export Citation Format

Share Document