scholarly journals Three-Stage Estimation of the Mean and Variance of the Normal Distribution with Application to an Inverse Coefficient of Variation with Computer Simulation

Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 831 ◽  
Author(s):  
Yousef ◽  
Hamdy

This paper considers sequentially two main problems. First, we estimate both the mean and the variance of the normal distribution under a unified one decision framework using Hall’s three-stage procedure. We consider a minimum risk point estimation problem for the variance considering a squared-error loss function with linear sampling cost. Then we construct a confidence interval for the mean with a preassigned width and coverage probability. Second, as an application, we develop Fortran codes that tackle both the point estimation and confidence interval problems for the inverse coefficient of variation using a Monte Carlo simulation. The simulation results show negative regret in the estimation of the inverse coefficient of variation, which indicates that the three-stage procedure provides better estimation than the optimal.

Computation ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 69 ◽  
Author(s):  
Ali Yousef ◽  
Hosny Hamdy

This paper sequentially estimates the inverse coefficient of variation of the normal distribution using Hall’s three-stage procedure. We find theorems that facilitate finding a confidence interval for the inverse coefficient of variation that has pre-determined width and coverage probability. We also discuss the sensitivity of the constructed confidence interval to detect a possible shift in the inverse coefficient of variation. Finally, we find the asymptotic regret encountered in point estimation of the inverse coefficient of variation under the squared-error loss function with linear sampling cost. The asymptotic regret provides negative values, which indicate that the three-stage sampling does better than the optimal fixed sample size had the population inverse coefficient of variation been known.


2009 ◽  
Vol 9 (15) ◽  
pp. 2835-2840 ◽  
Author(s):  
M.O. Abu-Shawie ◽  
F.M. Al-Athari ◽  
H.F. Kittani

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2084
Author(s):  
Ali Yousef ◽  
Ayman A. Amin ◽  
Emad E. Hassan ◽  
Hosny I. Hamdy

In this paper we discuss the multistage sequential estimation of the variance of the Rayleigh distribution using the three-stage procedure that was presented by Hall (Ann. Stat. 9(6):1229–1238, 1981). Since the Rayleigh distribution variance is a linear function of the distribution scale parameter’s square, it suffices to estimate the Rayleigh distribution’s scale parameter’s square. We tackle two estimation problems: first, the minimum risk point estimation problem under a squared-error loss function plus linear sampling cost, and the second is a fixed-width confidence interval estimation, using a unified optimal stopping rule. Such an estimation cannot be performed using fixed-width classical procedures due to the non-existence of a fixed sample size that simultaneously achieves both estimation problems. We find all the asymptotic results that enhanced finding the three-stage regret as well as the three-stage fixed-width confidence interval for the desired parameter. The procedure attains asymptotic second-order efficiency and asymptotic consistency. A series of Monte Carlo simulations were conducted to study the procedure’s performance as the optimal sample size increases. We found that the simulation results agree with the asymptotic results.


2018 ◽  
Vol 7 (2) ◽  
pp. 33
Author(s):  
Traoré Boubakar ◽  
Diabaté Lassina ◽  
Touré Belco ◽  
Fané Abdou

An interesting topic in mathematical statistics is that of the construction of the confidence intervals. Two kinds of intervals which are both based on the method of pivotal quantity are the shortest confidence interval and the equal tail confidence intervals. The aim of this paper is to clarify and comment on the finding of such intervals and to investigation the relation between the two kinds of intervals. In particular, we will give a construction technique of the shortest confidence intervals for the mean of the standard normal distribution. Examples illustrating the use of this technique are given.


Sign in / Sign up

Export Citation Format

Share Document