scholarly journals On Completeness of Sliced Spaces under the Alexandrov Topology

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 99
Author(s):  
Nazli Kurt ◽  
Kyriakos Papadopoulos

We show that in a sliced spacetime ( V , g ) , global hyperbolicity in V is equivalent to T A -completeness of a slice, if and only if the product topology T P , on V, is equivalent to T A , where T A denotes the usual spacetime Alexandrov “interval” topology.


1987 ◽  
Vol 102 (2) ◽  
pp. 281-295
Author(s):  
M. Henriksen ◽  
R. Kopperman ◽  
F. A. Smith

The topology most often used on a totally ordered group (G, <) is the interval topology. There are usually many ways to totally order G x G (e.g., the lexicographic order) but the interval topology induced by such a total order is rarely used since the product topology has obvious advantages. Let ℝ(+) denote the real line with its usual order and Q(+) the subgroup of rational numbers. There is an order on Q x Q whose associated interval topology is the product topology, but no such order on ℝ x ℝ can be found. In this paper we characterize those pairs G, H of totally ordered groups such that there is a total order on G x H for which the interval topology is the product topology.



2011 ◽  
Vol 52 (11) ◽  
pp. 112504 ◽  
Author(s):  
J. J. Benavides Navarro ◽  
E. Minguzzi


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1422
Author(s):  
Antonio Masiello

In this paper we present a survey of Fermat metrics and their applications to stationary spacetimes. A Fermat principle for light rays is stated in this class of spacetimes and we present a variational theory for the light rays and a description of the multiple image effect. Some results on variational methods, as Ljusternik-Schnirelmann and Morse Theory are recalled, to give a description of the variational methods used. Other applications of the Fermat metrics concern the global hyperbolicity and the geodesic connectedeness and a characterization of the Sagnac effect in a stationary spacetime. Finally some possible applications to other class of spacetimes are considered.



1970 ◽  
Vol 11 (4) ◽  
pp. 417-420
Author(s):  
Tze-Chien Sun ◽  
N. A. Tserpes

In [6] we announced the following Conjecture: Let S be a locally compact semigroup and let μ be an idempotent regular probability measure on S with support F. Then(a) F is a closed completely simple subsemigroup.(b) F is isomorphic both algebraically and topologically to a paragroup ([2], p.46) X × G × Y where X and Y are locally compact left-zero and right-zero semi-groups respectively and G is a compact group. In X × G × Y the topology is the product topology and the multiplication of any two elements is defined by , x where [y, x′] is continuous mapping from Y × X → G.(c) The induced μ on X × G × Y can be decomposed as a product measure μX × μG× μY where μX and μY are two regular probability measures on X and Y respectively and μG is the normed Haar measure on G.



2021 ◽  
Vol 62 (3) ◽  
pp. 033507
Author(s):  
Z. Avetisyan




1973 ◽  
Vol 16 (4) ◽  
pp. 416-430 ◽  
Author(s):  
John Boris Miller

Let (G, ≼) be an l-group having a compatible tight Riesz order ≦ with open-interval topology U, and H a normal subgroup. The first part of the paper concerns the question: Under what conditions on H is the structure of (G, ≼, ∧, ∨, ≦, U) carried over satisfactorily to by the canonical homomorphism; and its answer (Theorem 8°): H should be an l-ideal of (G, ≼) closed and not open in (G, U). Such a normal subgroup is here called a tangent. An essential step is to show that ≼′ is the associated order of ≦′.





Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 67 ◽  
Author(s):  
Muhammad Riaz ◽  
Florentin Smarandache ◽  
Atiqa Firdous ◽  
Atiqa Fakhar

Rough set approaches encounter uncertainty by means of boundary regions instead of membership values. In this paper, we develop the topological structure on soft rough set ( SR -set) by using pairwise SR -approximations. We define SR -open set, SR -closed sets, SR -closure, SR -interior, SR -neighborhood, SR -bases, product topology on SR -sets, continuous mapping, and compactness in soft rough topological space ( SRTS ). The developments of the theory on SR -set and SR -topology exhibit not only an important theoretical value but also represent significant applications of SR -sets. We applied an algorithm based on SR -set to multi-attribute group decision making (MAGDM) to deal with uncertainty.



1968 ◽  
Vol s1-43 (1) ◽  
pp. 517-520
Author(s):  
S. D. McCartan
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document