totally ordered group
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2019 ◽  
Vol 69 (6) ◽  
pp. 1237-1244
Author(s):  
Giacomo Lenzi

Abstract A Riesz structure on a lattice ordered abelian group G is a real vector space structure where the product of a positive element of G and a positive real is positive. In this paper we show that for every cardinal k there is a totally ordered abelian group with at least k Riesz structures, all of them isomorphic. Moreover two Riesz structures on the same totally ordered group are partially isomorphic in the sense of model theory. Further, as a main result, we build two nonisomorphic Riesz structures on the same l-group with strong unit. This gives a solution to a problem posed by Conrad in 1975. Finally we apply the main result to MV-algebras and Riesz MV-algebras.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250058 ◽  
Author(s):  
R. M. Salem ◽  
A. M. Hassanein ◽  
M. A. Farahat

In this paper we show that: if G is a totally ordered group and R is a G-Armendariz ring (an NI ring with nil (R) is nilpotent), then the ring Λ = R((G; σ; τ)) of Mal'cev–Neumann series is a right zip (weak zip) ring if and only if R is.


2000 ◽  
Vol 65 (2) ◽  
pp. 519-524
Author(s):  
D. Gluschankof

In [7] the author discussed the relative force —in the set theory ZF— of some representation theorems for ℓ-groups (lattice-ordered groups). One of the theorems not discussed in that paper is the Hahn representation theorem for abelian ℓ-groups. This result, originally proved by Hahn (see [8]) for totally ordered groups and half a century later by Conrad, Harvey and Holland for the general case (see [4]), states that any abelian ℓ-group can be embedded in a Hahn product of copies of R (the real line with its natural totally-ordered group structure). Both proofs rely heavily on Zorn's Lemma which is equivalent to AC (the axiom of choice).The aim of this work is to point out the use of non-constructible axioms (i.e., AC and weaker forms of it) in the proofs. Working in the frame of ZFA, that is, the Zermelo-Fraenkel set theory where a non-empty set of atoms is allowed, we present alternative proofs which, in the totally ordered case, do not require the use of AC. For basic concepts and notation on ℓ-groups the reader can refer to [1] and [2]. For set theory, to [11].


1987 ◽  
Vol 102 (2) ◽  
pp. 281-295
Author(s):  
M. Henriksen ◽  
R. Kopperman ◽  
F. A. Smith

The topology most often used on a totally ordered group (G, <) is the interval topology. There are usually many ways to totally order G x G (e.g., the lexicographic order) but the interval topology induced by such a total order is rarely used since the product topology has obvious advantages. Let ℝ(+) denote the real line with its usual order and Q(+) the subgroup of rational numbers. There is an order on Q x Q whose associated interval topology is the product topology, but no such order on ℝ x ℝ can be found. In this paper we characterize those pairs G, H of totally ordered groups such that there is a total order on G x H for which the interval topology is the product topology.


1975 ◽  
Vol 17 (5) ◽  
pp. 713-722 ◽  
Author(s):  
John A. Read

One of the fundamental tools in the theory of totally ordered groups is Hahn’s Theorem (a detailed discussion may be found in Fuchs [3]), which asserts, roughly, that every abelian totally ordered group can be embedded in a lexicographically ordered (unrestricted) direct sum of copies of the ordered group of real numbers. Almost any general question regarding the structure of abelian totally ordered groups can be answered by reference to Hahn’s theorem. For the class of nonabelian totally ordered groups, a theorem which parallels Hahn’s Theorem is given in [5], and states that each totally ordered group can be o-embedded in an ordered wreath product of subgroups of the real numbers. In order to extend this theorem to include an “if and only if” statement, one must consider lattice ordered groups, as an ordered wreath product of subgroups of the real numbers is, in general, not totally-ordered, but lattice ordered.


Sign in / Sign up

Export Citation Format

Share Document