stationary spacetimes
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Yong Song

AbstractIn this paper, we studied the evolutions of the innermost stable circular orbits (ISCOs) in dynamical spacetimes. At first, we reviewed the method to obtain the ISCO in Schwarzschild spacetime by varying its conserved orbital angular momentum. Then, we demonstrated this method is equivalent to the effective potential method in general static and stationary spacetimes. Unlike the effective potential method, which depends on the presence of the conserved orbital energy, this method requires the existence of conserved orbital angular momentum in spacetime. So it can be easily generalized to the dynamical spacetimes where there exists conserved orbital angular momentum. From this generalization, we studied the evolutions of the ISCOs in Vaidya spacetime, Vaidya-AdS spacetime and the slow rotation limit of Kerr–Vaidya spacetime. The results given by these examples are all reasonable and can be compared with the evolutions of the photon spheres in dynamical spacetimes.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Rajes Ghosh ◽  
Sudipta Sarkar

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1422
Author(s):  
Antonio Masiello

In this paper we present a survey of Fermat metrics and their applications to stationary spacetimes. A Fermat principle for light rays is stated in this class of spacetimes and we present a variational theory for the light rays and a description of the multiple image effect. Some results on variational methods, as Ljusternik-Schnirelmann and Morse Theory are recalled, to give a description of the variational methods used. Other applications of the Fermat metrics concern the global hyperbolicity and the geodesic connectedeness and a characterization of the Sagnac effect in a stationary spacetime. Finally some possible applications to other class of spacetimes are considered.


2021 ◽  
Author(s):  
Joshua Baines

<p><b>Every spacetime is defined by its metric, the mathematical object which further defines the spacetime curvature. From the relativity principle, we have the freedom to choose which coordinate system to write our metric in. Some coordinate systems, however, are better than others. In this text, we begin with a brief introduction into general relativity, Einstein's masterpiece theory of gravity. We then discuss some physically interesting spacetimes and the coordinate systems that the metrics of these spacetimes can be expressed in. More specifically, we discuss the existence of the rather useful unit-lapse forms of these spacetimes. Using the metric written in this form then allows us to conduct further analysis of these spacetimes, which we discuss. </b></p><p>Overall, the work given in this text has many interesting mathematical and physical applications. Firstly, unit-lapse spacetimes are quite common and occur rather naturally for many specific analogue spacetimes. In an astrophysical context, unit-lapse forms of stationary spacetimes are rather useful since they allow for very simple and immediate calculation of a large class of timelike geodesics, the rain geodesics. Physically these geodesics represent zero angular momentum observers (ZAMOs), with zero initial velocity that are dropped from spatial infinity and are a rather tractable probe of the physics occurring in the spacetime. Mathematically, improved coordinate systems of the Kerr spacetime are rather important since they give a better understanding of the rather complicated and challenging Kerr spacetime. These improved coordinate systems, for example, can be applied to the attempts at finding a "Gordon form" of the Kerr spacetime and can also be applied to attempts at upgrading the "Newman-Janis trick" from an ansatz to a full algorithm. Also, these new forms of the Kerr metric allows for a greater observational ability to differentiate exact Kerr black holes from "black hole mimickers".</p>


2021 ◽  
Author(s):  
Joshua Baines

<p><b>Every spacetime is defined by its metric, the mathematical object which further defines the spacetime curvature. From the relativity principle, we have the freedom to choose which coordinate system to write our metric in. Some coordinate systems, however, are better than others. In this text, we begin with a brief introduction into general relativity, Einstein's masterpiece theory of gravity. We then discuss some physically interesting spacetimes and the coordinate systems that the metrics of these spacetimes can be expressed in. More specifically, we discuss the existence of the rather useful unit-lapse forms of these spacetimes. Using the metric written in this form then allows us to conduct further analysis of these spacetimes, which we discuss. </b></p><p>Overall, the work given in this text has many interesting mathematical and physical applications. Firstly, unit-lapse spacetimes are quite common and occur rather naturally for many specific analogue spacetimes. In an astrophysical context, unit-lapse forms of stationary spacetimes are rather useful since they allow for very simple and immediate calculation of a large class of timelike geodesics, the rain geodesics. Physically these geodesics represent zero angular momentum observers (ZAMOs), with zero initial velocity that are dropped from spatial infinity and are a rather tractable probe of the physics occurring in the spacetime. Mathematically, improved coordinate systems of the Kerr spacetime are rather important since they give a better understanding of the rather complicated and challenging Kerr spacetime. These improved coordinate systems, for example, can be applied to the attempts at finding a "Gordon form" of the Kerr spacetime and can also be applied to attempts at upgrading the "Newman-Janis trick" from an ansatz to a full algorithm. Also, these new forms of the Kerr metric allows for a greater observational ability to differentiate exact Kerr black holes from "black hole mimickers".</p>


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 27
Author(s):  
Luis Herrera

The vorticity of world-lines of observers associated with the rotation of a massive body was reported by Lense and Thirring more than a century ago. In their example, the frame-dragging effect induced by the vorticity is directly (explicitly) related to the rotation of the source. However, in many other cases, it is not so, and the origin of vorticity remains obscure and difficult to identify. Accordingly, in order to unravel this issue, and looking for the ultimate origin of vorticity associated to frame-dragging, we analyze in this manuscript very different scenarios where the frame-dragging effect is present. Specifically, we consider general vacuum stationary spacetimes, general electro-vacuum spacetimes, radiating electro-vacuum spacetimes, and Bondi–Sachs radiating spacetimes. We identify the physical quantities present in all these cases, which determine the vorticity and may legitimately be considered as responsible for the frame-dragging. Doing so, we provide a comprehensive, physical picture of frame-dragging. Some observational consequences of our results are discussed.


Sign in / Sign up

Export Citation Format

Share Document