scholarly journals Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 172 ◽  
Author(s):  
Hari M. Srivastava ◽  
Ahmad Motamednezhad ◽  
Ebrahim Analouei Adegani

In this article, we introduce a general family of analytic and bi-univalent functions in the open unit disk, which is defined by applying the principle of differential subordination between analytic functions and the Tremblay fractional derivative operator. The upper bounds for the general coefficients | a n | of functions in this subclass are found by using the Faber polynomial expansion. We have thereby generalized and improved some of the previously published results.

2018 ◽  
Vol 68 (2) ◽  
pp. 369-378 ◽  
Author(s):  
Ahmad Zireh ◽  
Ebrahim Analouei Adegani ◽  
Mahmood Bidkham

Abstract In this paper, we use the Faber polynomial expansion to find upper bounds for |an| (n ≥ 3) coefficients of functions belong to classes $\begin{array}{} H_{q}^{\Sigma}(\lambda,h),\, ST_{q}^{\Sigma}(\alpha,h)\,\text{ and} \,\,M_{q}^{\Sigma}(\alpha,h) \end{array}$ which are defined by quasi-subordinations in the open unit disk 𝕌. Further, we generalize some of the previously published results.


Filomat ◽  
2015 ◽  
Vol 29 (2) ◽  
pp. 351-360 ◽  
Author(s):  
Yong Sun ◽  
Yue-Ping Jiang ◽  
Antti Rasila

For ? ? 0 and 0 ? ? < 1 < ?, we denote by K(?,?,?) the class of normalized analytic functions satisfying the two sided-inequality ? < K (Zf'(z)/f(z) + z2f''(z)/f(z))<? (z ? U), where U is the open unit disk. Let K? (?, ?, ?) be the class of bi-univalent functions such that f and its inverse f-1 both belong to the class K(?, ?, ?). In this paper, we establish bounds for the coefficients, and solve the Fekete-Szeg? problem, for the class K((?,?,?). Furthermore, we obtain upper bounds for the first two Taylor-Maclaurin coefficients of the functions in the class K? (?,?,?)


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 306 ◽  
Author(s):  
Suhila Elhaddad ◽  
Maslina Darus

Recently, a number of features and properties of interest for a range of bi-univalent and univalent analytic functions have been explored through systematic study, e.g., coefficient inequalities and coefficient bounds. This study examines S q δ ( ϑ , η , ρ , ν ; ψ ) as a novel general subclass of Σ which comprises normalized analytic functions, as well as bi-univalent functions within Δ as an open unit disk. The study locates estimates for the | a 2 | and | a 3 | Taylor–Maclaurin coefficients in functions of the class which is considered. Additionally, links with a number of previously established findings are presented.


Filomat ◽  
2016 ◽  
Vol 30 (14) ◽  
pp. 3743-3757 ◽  
Author(s):  
H.M. Srivastava ◽  
Dorina Răducanu ◽  
Paweł Zaprawa

For ??(?,?], let Ra(?) denote the class of all normalized analytic functions in the open unit disk U satisfying the following differential subordination: f'(z)+1/2(1+ei?)z f''(z)<?(z) z ? U), where the function ?(z) is analytic in the open unit disk U such that ?(0)=1. In this paper, various integral and convolution characterizations, coefficient estimates and differential subordination results for functions belonging to the class R?(?) are investigated. The Fekete-Szeg? coefficient functional associated with the kth root transform [f(zk)]1/k of functions in R?(?) is obtained. A similar problem for a corresponding class R?,?(?) of bi-univalent functions is also considered. Connections with previous known results are pointed out.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Hari Mohan Srivastava ◽  
Ahmad Motamednezhad ◽  
Safa Salehian

In this paper, we introduce a new comprehensive subclass ΣB(λ,μ,β) of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients |b0|, |b1| and |b2| for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients |bn|(n≧1) for functions in the subclass ΣB(λ,μ,β) by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hameed Ur Rehman ◽  
Maslina Darus ◽  
Jamal Salah

In the present paper, the authors implement the two analytic functions with its positive real part in the open unit disk. New types of polynomials are introduced, and by using these polynomials with the Faber polynomial expansion, a formula is structured to solve certain coefficient problems. This formula is applied to a certain class of bi-univalent functions and solve the n -th term of its coefficient problems. In the last section of the article, several well-known classes are also extended to its n -th term.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1839-1845 ◽  
Author(s):  
H.M. Srivastava ◽  
Sevtap Eker ◽  
Rosihan Alic

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions in the open unit disk U. By using the Faber polynomial expansions, we obtain upper bounds for the coefficients of functions belonging to this analytic and bi-univalent function class. Some interesting recent developments involving other subclasses of analytic and bi-univalent functions are also briefly mentioned.


2021 ◽  
pp. 2376-2383
Author(s):  
Waggas Galib Atshan ◽  
Aqeel Ahmed Redha Ali

In this present paper, we obtain some differential subordination and superordination results, by using generalized operators for certain subclass of analytic functions in the open unit disk. Also, we derive some sandwich results.


2021 ◽  
Vol 39 (2) ◽  
pp. 87-104
Author(s):  
Ebrahim Analouei Adegani ◽  
Ahmad Zireh ◽  
Mostafa Jafari

In this work, we introduce a new subclas of bi-univalent functions which is defined by Hadamard product andsubordination in the open unit disk. and find upper bounds for the second and third coefficients for functions in this new subclass. Further, we generalize and improve some of the previously published results.


Sign in / Sign up

Export Citation Format

Share Document