scholarly journals Reflection-Like Maps in High-Dimensional Euclidean Space

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 872
Author(s):  
Zhiyong Huang ◽  
Baokui Li

In this paper, we introduce reflection-like maps in n-dimensional Euclidean spaces, which are affinely conjugated to θ : ( x 1 , x 2 , … , x n ) → 1 x 1 , x 2 x 1 , … , x n x 1 . We shall prove that reflection-like maps are line-to-line, cross ratios preserving on lines and quadrics preserving. The goal of this article was to consider the rigidity of line-to-line maps on the local domain of R n by using reflection-like maps. We mainly prove that a line-to-line map η on any convex domain satisfying η ∘ 2 = i d and fixing any points in a super-plane is a reflection or a reflection-like map. By considering the hyperbolic isometry in the Klein Model, we also prove that any line-to-line bijection f : D n ↦ D n is either an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like map, from which we can find that reflection-like maps are important elements and instruments to consider the rigidity of line-to-line maps.

2018 ◽  
Vol 62 (4) ◽  
pp. 923-929
Author(s):  
Qi Yang ◽  
Chuanming Zong

AbstractIn 1885, Fedorov discovered that a convex domain can form a lattice tiling of the Euclidean plane if and only if it is a parallelogram or a centrally symmetric hexagon. This paper proves the following results. Except for parallelograms and centrally symmetric hexagons, there are no other convex domains that can form two-, three- or four-fold lattice tilings in the Euclidean plane. However, there are both octagons and decagons that can form five-fold lattice tilings. Whenever $n\geqslant 3$, there are non-parallelohedral polytopes that can form five-fold lattice tilings in the $n$-dimensional Euclidean space.


10.37236/8565 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Ferenc Szöllősi ◽  
Patric R.J. Östergård

A finite set of vectors $\mathcal{X}$ in the $d$-dimensional Euclidean space $\mathbb{R}^d$ is called an $s$-distance set if the set of mutual distances between distinct elements of $\mathcal{X}$ has cardinality exactly $s$. In this paper we present a combined approach of isomorph-free exhaustive generation of graphs and Gröbner basis computation to classify the largest $3$-distance sets in $\mathbb{R}^4$, the largest $4$-distance sets in $\mathbb{R}^3$, and the largest $6$-distance sets in $\mathbb{R}^2$. We also construct new examples of large $s$-distance sets in $\mathbb{R}^d$ for $d\leq 8$ and $s\leq 6$, and independently verify several earlier results from the literature.


2014 ◽  
Vol 43 (4) ◽  
pp. 1363-1395 ◽  
Author(s):  
Dror Aiger ◽  
Haim Kaplan ◽  
Micha Sharir

2008 ◽  
Vol 41 (4) ◽  
Author(s):  
Kazım İlarslan ◽  
Emilija Nešović

AbstractIn this paper, we give some characterization for a osculating curve in 3-dimensional Euclidean space and we define a osculating curve in the Euclidean 4-space as a curve whose position vector always lies in orthogonal complement


Sign in / Sign up

Export Citation Format

Share Document