scholarly journals Ricci Curvature Inequalities for Skew CR-Warped Product Submanifolds in Complex Space Forms

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1317
Author(s):  
Meraj Ali Khan ◽  
Ibrahim Aldayel

The fundamental goal of this study was to achieve the Ricci curvature inequalities for a skew CR-warped product (SCR W-P) submanifold isometrically immersed in a complex space form (CSF) in the expressions of the squared norm of mean curvature vector and warping functions (W-F). The equality cases were likewise examined. In particular, we also derived Ricci curvature inequalities for CR-warped product (CR W-P) submanifolds. To sustain this study, an example of these submanifolds is provided.

2001 ◽  
Vol 64 (2) ◽  
pp. 201-212 ◽  
Author(s):  
Kadri Arslan ◽  
Ridvan Ezentas ◽  
Ion Mihai ◽  
Cengizhan Murathan ◽  
Cihan Özgür

Chen (1999) established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemanian space form with arbitrary codimension. Matsumoto (to appear) dealt with similar problems for sub-manifolds in complex space forms.In this article we obtain sharp relationships between the Ricci curvature and the squared mean curvature for submanifolds in (K, μ)-contact space forms.


2002 ◽  
Vol 72 (2) ◽  
pp. 247-256 ◽  
Author(s):  
Ion Mihai

AbstractRecently, Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. Afterwards, we dealt with similar problems for submanifolds in complex space forms.In the present paper, we obtain sharp inequalities between the Ricci curvature and the squared mean curvature for submanifolds in Sasakian space forms. Also, estimates of the scalar curvature and the k-Ricci curvature respectively, in terms of the squared mean curvature, are proved.


2019 ◽  
Vol 30 (05) ◽  
pp. 1950027 ◽  
Author(s):  
Ling He ◽  
Jiayu Li

In this paper, we obtain a sufficient and necessary condition for the existence of symplectic critical surfaces with parallel normalized mean curvature vector in two-dimensional complex space forms. Explicitly, we find that there does not exist any symplectic critical surface with parallel normalized mean curvature vector in two-dimensional complex space forms of nonzero constant holomorphic sectional curvature. And there exists and only exists a two-parameters family of symplectic critical surfaces with parallel normalized mean curvature vector in two-dimensional complex plane, which are rotationally symmetric.


2002 ◽  
Vol 29 (12) ◽  
pp. 719-726 ◽  
Author(s):  
Kadri Arslan ◽  
Ridvan Ezentas ◽  
Ion Mihai ◽  
Cengizhan Murathan ◽  
Cihan Özgür

In 1999, Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. Similar problems for submanifolds in complex space forms were studied by Matsumoto et al. In this paper, we obtain sharp relationships between the Ricci curvature and the squared mean curvature for submanifolds in Kenmotsu space forms.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amira A. Ishan

The present paper studies the applications of Obata’s differential equations on the Ricci curvature of the pointwise semislant warped product submanifolds. More precisely, by analyzing Obata’s differential equations on pointwise semislant warped product submanifolds, we demonstrate that, under certain conditions, the base of these submanifolds is isometric to a sphere. We also look at the effects of certain differential equations on pointwise semislant warped product submanifolds and show that the base is isometric to a special type of warped product under some geometric conditions.


2005 ◽  
Vol 36 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Aimin Song ◽  
Ximin Liu

In this paper, we obtain an inequality about Ricci curvature and squared mean curvature of slant submanifolds in generalized complex space forms. We also obtain an inequality about the squared mean curvature and the normalized scalar curvature of slant submanifolds in generalized coplex space forms.


Sign in / Sign up

Export Citation Format

Share Document