scholarly journals H-Umbilical Lagrangian Submanifolds of the Nearly Kähler \( {\mathbb{S}^3\times\mathbb{S}^3} \)

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1427
Author(s):  
Miroslava Antić ◽  
Marilena Moruz ◽  
Joeri Van der Veken

H-umbilicity was introduced as an analogue of total umbilicity for Lagrangian submanifolds since, in some relevant cases, totally umbilical Lagrangian submanifolds are automatically totally geodesic. In this paper, we show that, in the homogeneous nearly Kähler S3×S3, also H-umbilical Lagrangian submanifolds are automatically totally geodesic.

2021 ◽  
Author(s):  
Sanjay Kumar Singh ◽  
Punam Gupta

In this chapter, we give the detailed study about the Clairaut submersion. The fundamental notations are given. Clairaut submersion is one of the most interesting topics in differential geometry. Depending on the condition on distribution of submersion, we have different classes of submersion such as anti-invariant, semi-invariant submersions etc. We describe the geometric properties of Clairaut anti-invariant submersions and Clairaut semi-invariant submersions whose total space is a Kähler, nearly Kähler manifold. We give condition for Clairaut anti-invariant submersion to be a totally geodesic map and also study Clairaut anti-invariant submersions with totally umbilical fibers. We also give the conditions for the semi-invariant submersions to be Clairaut map and also for Clairaut semi-invariant submersion to be a totally geodesic map. We also give some illustrative example of Clairaut anti-invariant and semi-invariant submersion.


2018 ◽  
Vol 149 (03) ◽  
pp. 655-689 ◽  
Author(s):  
Burcu Bektaş ◽  
Marilena Moruz ◽  
Joeri Van der Veken ◽  
Luc Vrancken

AbstractWe study non-totally geodesic Lagrangian submanifolds of the nearly Kähler 𝕊3 × 𝕊3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related to minimal surfaces in 𝕊3. Indeed, starting from an arbitrary minimal surface, we can construct locally a large family of such Lagrangian immersions, including one exceptional example. We also show that locally all such Lagrangian submanifolds can be obtained in this way.


2007 ◽  
Vol 50 (3) ◽  
pp. 321-333 ◽  
Author(s):  
David E. Blair

AbstractRecently I. Castro and F.Urbano introduced the Lagrangian catenoid. Topologically, it is ℝ × Sn–1 and its induced metric is conformally flat, but not cylindrical. Their result is that if a Lagrangian minimal submanifold in ℂn is foliated by round (n – 1)-spheres, it is congruent to a Lagrangian catenoid. Here we study the question of conformally flat, minimal, Lagrangian submanifolds in ℂn. The general problem is formidable, but we first show that such a submanifold resembles a Lagrangian catenoid in that its Schouten tensor has an eigenvalue of multiplicity one. Then, restricting to the case of at most two eigenvalues, we show that the submanifold is either flat and totally geodesic or is homothetic to (a piece of) the Lagrangian catenoid.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 59
Author(s):  
Erol Kılıç ◽  
Mehmet Gülbahar ◽  
Ecem Kavuk

Concurrent vector fields lying on lightlike hypersurfaces of a Lorentzian manifold are investigated. Obtained results dealing with concurrent vector fields are discussed for totally umbilical lightlike hypersurfaces and totally geodesic lightlike hypersurfaces. Furthermore, Ricci soliton lightlike hypersurfaces admitting concurrent vector fields are studied and some characterizations for this frame of hypersurfaces are obtained.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1160
Author(s):  
Elsa Ghandour ◽  
Luc Vrancken

The space S L ( 2 , R ) × S L ( 2 , R ) admits a natural homogeneous pseudo-Riemannian nearly Kähler structure. We investigate almost complex surfaces in this space. In particular, we obtain a complete classification of the totally geodesic almost complex surfaces and of the almost complex surfaces with parallel second fundamental form.


2019 ◽  
Vol 6 (1) ◽  
pp. 303-319
Author(s):  
Yoshihiro Ohnita

AbstractAn R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is one of invariants under Hamiltonian isotopies and very fundamental to study the Floer homology for intersections of Lagrangian submanifolds. In this paper we show a Lie theoretic formula for the minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces, and provide some examples of the calculation by the formula.


2000 ◽  
Vol 62 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Aurel Bejancu ◽  
Hani Reda Farran

We introduce the notion of generalised 3-Sasakian structure on a manifold and show that a totally umbilical, but not totally geodesic, proper QR-submanifold of a quaternion Kaehlerian manifold is an extrinsic sphere and inherits such a structure.


1996 ◽  
Vol 27 (2) ◽  
pp. 145-149
Author(s):  
S. H. KON ◽  
SIN-LENG TAN

The geometry of a CR-submanifold in a Kaehler manifold has been extensively studied. B.Y . Chen has classified the totally umbilical CR-submanifolds of a Kaehler manifold and showed that they are either totally geodesic, or totally real or dim$(D^{\perp}) =1$. In this paper we show that such a result is also true in a nearly Kaehler manifold.


Sign in / Sign up

Export Citation Format

Share Document