schouten tensor
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
A.V. Bukusheva

The concept of the intrinsic geometry of a nonholonomic Kenmotsu manifold M is introduced. It is understood as the set of those properties of the manifold that depend only on the framing  of the D^ distribution D of the manifold M, on the parallel transformation of vectors belonging to the distribution D along curves tangent to this distribution. The invariants of the intrinsic geometry of the nonholonomic Kenmotsu manifold are: the Schouten curvature tensor; 1-form η generating the distribution D; the Lie derivative  of the metric tensor g along the vector field ; Schouten — Wagner tensor field P, whose components in adapted coordinates are expressed using the equalities . It is proved that, as in the case of the Kenmotsu manifold, the Schouten — Wagner tensor of the manifold M vanishes. It follows that the Schouten tensor of a nonholonomic Kenmotsu manifold has the same formal properties as the Riemann curvature tensor. It is proved that the alternation of the Ricci — Schouten tensor coincides with the differential of the structural form. This property of the Ricci — Schouten tensor is used in the proof of the main result of the article: a nonholonomic Kenmotsu manifold cannot carry the structure of an η-Einstein manifold.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
L. Andrianopoli ◽  
B. L. Cerchiai ◽  
R. Matrecano ◽  
O. Miskovic ◽  
R. Noris ◽  
...  

Abstract We develop in detail the holographic framework for an $$ \mathcal{N} $$ N = 2 pure AdS supergravity model in four dimensions, including all the contributions from the fermionic fields and adopting the Fefferman-Graham parametrization. We work in the first order formalism, where the full superconformal structure can be kept manifest in principle, even if only a part of it is realized as a symmetry on the boundary, while the remainder has a non-linear realization. Our study generalizes the results presented in antecedent literature and includes a general discussion of the gauge-fixing conditions on the bulk fields which yield the asymptotic symmetries at the boundary. We construct the corresponding super- conformal currents and show that they satisfy the related Ward identities when the bulk equations of motion are imposed. Consistency of the holographic setup requires the super- AdS curvatures to vanish at the boundary. This determines, in particular, the expression of the super-Schouten tensor of the boundary theory, which generalizes the purely bosonic Schouten tensor of standard gravity by including gravitini bilinears. The same applies to the superpartner of the super-Schouten tensor, the conformino. Furthermore, the vanishing of the supertorsion poses general constraints on the sources of the three-dimensional boundary conformal field theory and requires that the super-Schouten tensor is endowed with an antisymmetric part proportional to a gravitino-squared term.


Author(s):  
Aliya V. Bukusheva

The paper is dedicated to the investigation of the interior geometry of the Kenmotsu manifolds M. By the interior geometry of the manifold M we mean the aggregate of the properties of the manifold that depend only on the closing of the distribution D of the Kenmotsu manifold as well as on the parallel transport of the vectors from the distribution D along arbitrary curves of the manifold. The invariants of the interior geometry of a Kenmotsu manifold are the following: the Schouten curvature tensor; the 1-form η generating the distribution D; the Lie derivative of the metric tensor g along the structure vector field ; the Schouten-Wagner admissible tensor fields with the components with respect to adapted coordinates; the structural endomorphism φ; the endomorphism N that allows to prolong the interior connection to a connection in a vector bundle. A special attention is payed to the Ricci-Schouten tensor. In particular, it is stated that a Kenmotsu manifold with zero Ricci-Schouten tensor is an Einstein manifold. Conversely, if M is an η-Einstein Kenmotsu manifold and then M is an Einstein manifold with zero Ricci-Schouten tensor. It is proved that the Ricci-Schouten tensor is zero if and only if the Kenmotsu manifold M is locally Ricci-symmetric. This implies the following well-known result: a Kenmotsu manifold is an Einstein manifold if and only if it is locally Ricci-symmetric. An N-connection with torsion, is introduced; this connection is Ricci-flat if and only if M is an Einstein manifold.


2019 ◽  
Vol 74 (4) ◽  
Author(s):  
Marcos Tulio Carvalho ◽  
Mauricio Pieterzack ◽  
Romildo Pina

Abstract We consider the pseudo-Euclidean space $$({\mathbb {R}}^n,g)$$(Rn,g), with $$n \ge 3$$n≥3 and $$g_{ij} = \delta _{ij} \varepsilon _{i}$$gij=δijεi, where $$\varepsilon _{i} = \pm 1$$εi=±1, with at least one positive $$\varepsilon _{i}$$εi and non-diagonal symmetric tensors $$T = \sum \nolimits _{i,j}f_{ij}(x) dx_i \otimes dx_{j} $$T=∑i,jfij(x)dxi⊗dxj. Assuming that the solutions are invariant by the action of a translation $$(n-1)$$(n-1)- dimensional group, we find the necessary and sufficient conditions for the existence of a metric $$\bar{g}$$g¯ conformal to g, such that the Schouten tensor $$\bar{g}$$g¯, is equal to T. From the obtained results, we show that for certain functions h, defined in $$\mathbb {R}^{n}$$Rn, there exist complete metrics $$\bar{g}$$g¯, conformal to the Euclidean metric g, whose curvature $$\sigma _{2}(\bar{g}) = h$$σ2(g¯)=h.


Author(s):  
Spyros Alexakis

This chapter fleshes out the strategy of iteratively decomposing any P(g) = unconverted formula 1 for which ∫P(g)dVsubscript g is a global conformal invariant. It makes precise the notions of better and worse complete contractions in P(g) and then spells out (1.17), via Propositions 2.7, 2.8. In particular, using the well-known decomposition of the curvature tensor into its trace-free part (the Weyl tensor) and its trace part (the Schouten tensor), it reexpresses P(g) as a linear combination of complete contractions involving differentiated Weyl tensors and differentiated Schouten tensors, as in (2.47). The chapter also proves (1.17) when the worst terms involve at least one differentiated Schouten tensor.


Sign in / Sign up

Export Citation Format

Share Document