scholarly journals On Hyperstability of the Cauchy Functional Equation in n-Banach Spaces

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1886
Author(s):  
Janusz Brzdęk ◽  
El-sayed El-hady

We present some hyperstability results for the well-known additive Cauchy functional equation f(x+y)=f(x)+f(y) in n-normed spaces, which correspond to several analogous outcomes proved for some other spaces. The main tool is a recent fixed-point theorem.

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1117
Author(s):  
Maryam Ramezani ◽  
Ozgur Ege ◽  
Manuel De la Sen

In this study, our goal is to apply a new fixed point method to prove the Hyers-Ulam-Rassias stability of a quadratic functional equation in normed spaces which are not necessarily Banach spaces. The results of the present paper improve and extend some previous results.


2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
M. Eshaghi Gordji ◽  
M. B. Ghaemi ◽  
G. H. Kim ◽  
Badrkhan Alizadeh

Let be an algebra, and let , be ring automorphisms of . An additive mapping is called a -derivation if for all . Moreover, an additive mapping is said to be a generalized -derivation if there exists a -derivation such that for all . In this paper, we investigate the superstability of generalized -derivations in non-Archimedean algebras by using a version of fixed point theorem via Cauchy’s functional equation.


2019 ◽  
Vol 101 (2) ◽  
pp. 299-310 ◽  
Author(s):  
JANUSZ BRZDĘK ◽  
EL-SAYED EL-HADY

We show how some Ulam stability issues can be approached for functions taking values in 2-Banach spaces. We use the example of the well-known Cauchy equation $f(x+y)=f(x)+f(y)$, but we believe that this method can be applied for many other equations. In particular we provide an extension of an earlier stability result that has been motivated by a problem of Th. M. Rassias. The main tool is a recent fixed point theorem in some spaces of functions with values in 2-Banach spaces.


2001 ◽  
Vol 27 (10) ◽  
pp. 631-639 ◽  
Author(s):  
Hendra Gunawan ◽  
M. Mashadi

Given ann-normed space withn≥2, we offer a simple way to derive an(n−1)-norm from then-norm and realize that anyn-normed space is an(n−1)-normed space. We also show that, in certain cases, the(n−1)-norm can be derived from then-norm in such a way that the convergence and completeness in then-norm is equivalent to those in the derived(n−1)-norm. Using this fact, we prove a fixed point theorem for somen-Banach spaces.


Author(s):  
Renata Malejki

AbstractWe prove some stability and hyperstability results for a generalization of the well known Fréchet functional equation, stemming from one of the characterizations of the inner product spaces. As the main tool we use a fixed point theorem for some function spaces. We end the paper with some new inequalities characterizing the inner product spaces.


Filomat ◽  
2018 ◽  
Vol 32 (14) ◽  
pp. 4897-4910
Author(s):  
Iz-Iddine El-Fassi

Using the fixed point theorem [12, Theorem 1] in (2,?)-Banach spaces, we prove the generalized hyperstability results of the bi-Jensen functional equation 4f(x + z/2; y + w/2) = f (x,y) + f (x,w) + f (z,y) + f (y,w). Our main results state that, under some weak natural assumptions, functions satisfying the equation approximately (in some sense) must be actually solutions to it. The method we use here can be applied to various similar equations in many variables.


Filomat ◽  
2017 ◽  
Vol 31 (17) ◽  
pp. 5489-5495 ◽  
Author(s):  
Janusz Brzdęk ◽  
Magdalena Piszczek

We show that some multifunctions F : K ? n(Y), satisfying functional inclusions of the form ? (x,F(?1(x)),..., F(?n(x)))? F(x)G(x), admit near-selections f : K ? Y, fulfilling the functional equation ? (x,f (?1(x)),..,, f(?n(x)))= f(x), where functions G : K ? n(Y), ?: K x Yn ? Y and ?1,..., ?n ? KK are given, n is a fixed positive integer, K is a nonempty set, (Y,?) is a group and n(Y) denotes the family of all nonempty subsets of Y. Our results have been motivated by the notion of Ulam stability and some earlier outcomes. The main tool in the proofs is a very recent fixed point theorem for nonlinear operators, acting on some spaces of multifunctions.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
M. Eshaghi Gordji ◽  
M. B. Ghaemi ◽  
Badrkhan Alizadeh

We investigate the superstability of generalized derivations in non-Archimedean algebras by using a version of fixed point theorem via Cauchy functional equation.


2021 ◽  
Vol 40 (1) ◽  
pp. 153-174
Author(s):  
Mustapha Esseghyr Hryrou ◽  
Ahmed Nuino ◽  
Samir Kabbaj

The aim of this paper is to introduce and solve the following pradical functional equation related to Drygas mappings f(√(p&x^p+ y^p ))+f(√(p&x^p+ y^p ))=2f(x)+f(y)+f(-y),x,y ∈R, where f is a mapping from R into a vector space X and p ≥ 3 is an odd natural number. Using an analogue version of Brzdȩk’s fixed point theorem [14], we establish some hyperstability results for the considered equation in non-Archimedean Banach spaces. Also, we give some hyperstability results for the inhomogeneous p-radical functional equation related to Drygas mappings f(√(p&x^p+ y^p ))+f(√(p&x^p+ y^p ))=2f(x)+f(y)+f(-y)+G(x,y)


Sign in / Sign up

Export Citation Format

Share Document