scholarly journals Use of Bayesian Markov Chain Monte Carlo Methods to Model Kuwait Medical Genetic Center Data: An Application to Down Syndrome and Mental Retardation

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 248
Author(s):  
Reem Aljarallah ◽  
Samer A Kharroubi

Logit, probit and complementary log-log models are the most widely used models when binary dependent variables are available. Conventionally, these models have been frequentists. This paper aims to demonstrate how such models can be implemented relatively quickly and easily from a Bayesian framework using Gibbs sampling Markov chain Monte Carlo simulation methods in WinBUGS. We focus on the modeling and prediction of Down syndrome (DS) and Mental retardation (MR) data from an observational study at Kuwait Medical Genetic Center over a 30-year time period between 1979 and 2009. Modeling algorithms were used in two distinct ways; firstly, using three different methods at the disease level, including logistic, probit and cloglog models, and, secondly, using bivariate logistic regression to study the association between the two diseases in question. The models are compared in terms of their predictive ability via R2, adjusted R2, root mean square error (RMSE) and Bayesian Deviance Information Criterion (DIC). In the univariate analysis, the logistic model performed best, with R2 (0.1145), adjusted R2 (0.114), RMSE (0.3074) and DIC (7435.98) for DS, and R2 (0.0626), adjusted R2 (0.0621), RMSE (0.4676) and DIC (23120) for MR. In the bivariate case, results revealed that 7 and 8 out of the 10 selected covariates were significantly associated with DS and MR respectively, whilst none were associated with the interaction between the two outcomes. Bayesian methods are more flexible in handling complex non-standard models as well as they allow model fit and complexity to be assessed straightforwardly for non-nested hierarchical models.

2020 ◽  
Vol 2019 (1) ◽  
pp. 59-66
Author(s):  
Taly Purwa

Penelitian ini menerapkan model Spatial Logit-normal pada Small Area Estimation (SAE) untuk estimasi proporsi penduduk dengan asupan kalori minimum di bawah 1.400 kkal/kapita/hari pada level kecamatan di Provinsi Bali Tahun 2014 yang merupakan indikator 2.1.2(A) pada tujuan ke-2 SDGs dalam rangka mengukur capaian dan mendukung tercapainya target SDGs pada level lebih tinggi. Terdapat tiga model SAE yang digunakan dengan spesifikasi random effect yang berbeda, yaitu model dengan random effect yang bersifat saling bebas (independen), spatial random effect (iCAR) serta model dengan kedua jenis random effect sekaligus (BYM). Penggunaan unsur spatial random effect diharapkan dapat meningkatkan efisiensi hasil estimasi. Metode estimasi menggunakan pendekatan Hierarchical Bayes (HB) dengan metode Markov Chain Monte Carlo (MCMC) algoritma Gibbs Sampling. Estimasi parameter pada ketiga model menunjukkan hasil yang relatif tidak berbeda dimana hanya ada satu variabel prediktor yang memiliki pengaruh signifikan, yaitu proporsi keluarga pertanian, pada model dengan random effect independen dan model BYM. Sedangkan pada model iCAR tidak ada satu pun variabel prediktor yang berpengaruh signifikan. Berdasarkan nilai Deviance Information Criterion (DIC), model terbaik adalah model BYM. Akan tetapi penambahan unsur spatial random effect bersamaan dengan random effect independen tidak secara signifikan dapat meningkatkan efisiensi hasil estimasi akibat dari minimnya nilai dependensi spasial Moran’s I. Secara visual, pemetaan hasil estimasi dengan model terbaik tidak menunjukkan adanya pola persebaran atau pengelompokan tertentu pada level kecamatan.


1994 ◽  
Author(s):  
Alan E. Gelfand ◽  
Sujit K. Sahu

Sign in / Sign up

Export Citation Format

Share Document