scholarly journals Stochastic Chebyshev Goal Programming Mixed Integer Linear Model for Sustainable Global Production Planning

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 483
Author(s):  
Chia-Nan Wang ◽  
Nhat-Luong Nhieu ◽  
Trang Thi Thu Tran

Production planning is a necessary process that directly affects the efficiency of production systems in most industries. The complexity of the current production planning problem depends on increased options in production, uncertainties in demand and production resources. In this study, a stochastic multi-objective mixed-integer optimization model is developed to ensure production efficiency in uncertainty conditions and satisfy the requirements of sustainable development. The efficiency of the production system is ensured through objective functions that optimize backorder quantity, machine uptime and customer satisfaction. The other three objective functions of the proposed model are related to optimization of profits, emissions, and employment changing. The objective functions respectively represent the three elements of sustainable development: economy, environment, and sociality. The proposed model also assures the production manager’s discretion over whether or not to adopt production options such as backorder, overtime, and employment of temporary workers. At the same time, the resource limits of the above options can also be adjusted according to the situation of each production facility via the model’s parameters. The solutions that compromise the above objective functions are determined with the Chebyshev goal programming approach together with the weights of the goals. The model is applied to the multinational production system of a Southeast Asian supplier in the textile industry. The goal programming solution of the model shows an improvement in many aspects compared to this supplier’s manufacturing practices under the same production conditions. Last but not least, the study develops different scenarios based on different random distributions of uncertainty demand and different weights between the objective functions. The analysis and evaluation of these scenarios provide a reference basis for managers to adjust the production system in different situations. Analysis of uncertain demand with more complex random distributions as well as making predictions about the effectiveness of scenarios through the advantages of machine learning can be considered in future studies.

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Erhan Yazıcı ◽  
Gülçin Büyüközkan ◽  
Murat Baskak

It is important to manage reverse material flows such as recycling, reusing, and remanufacturing in a production environment. This paper addresses a production planning problem which involves reusing of scrap and recycling of waste that occur in the various stages of the production process and remanufacturing/recycling of returns in a closed-loop supply chain environment. An extended material requirement planning (MRP) is proposed as a mixed integer linear programming (MILP) model which includes—beside forward—these reverse material flows. The proposed model is developed for the jewelry industry in Turkey, which uses gold as the primary resource of production. The aim is to manage these reverse material flows as a part of production planning to utilize resources. Considering the mostly unpredictable nature of reverse material flows, the proposed model is likewise transformed into a fuzzy model to provide a better review of production plan for the decision maker. The suggested model is examined through a case study to test the applicability and efficiency.


2021 ◽  
Vol 15 ◽  
pp. 8-13
Author(s):  
Mohamed K. Omar ◽  
Muzalna Mohd-Jusoh ◽  
Mohd Omar

This paper considers the hierarchical production planning (HPP) concept to solve a production planning problem in the process industry in a fuzzy environment. The adopted fuzzy HPP consists of two levels in which a fuzzy aggregate production planning (FAPP) model is developed in the first level, and then a fuzzy disaggregate production planning (FDPP) model is developed at the second level. The FAPP was reported by Omar et al. [1] and therefore, this research paper discusses the FDPP model. We formulated the disaggregate model as a fuzzy mixed-integer linear programming model that aims to develop a master production schedule in which numbers of optimal batches are developed in presence of setup time. In addition, we evaluate the performance of the FMILP by comparing its results with a previously reported approach. The findings indicate that significant cost savings were achieved by adopting the fuzzy mathematical programming approach.


2017 ◽  
Vol 24 (5) ◽  
pp. 1138-1165 ◽  
Author(s):  
Peeyush Pandey ◽  
Bhavin J. Shah ◽  
Hasmukh Gajjar

Purpose Due to the ever increasing concern toward sustainability, suppliers nowadays are evaluated on the basis of environmental performances. The data on supplier’s performance are not always available in quantitative form and evaluating supplier on the basis of qualitative data is a challenging task. The purpose of this paper is to develop a framework for the selection of suppliers by evaluating them on the basis of both quantitative and qualitative data. Design/methodology/approach Literature on sustainability, green supply chain and lean practices related to supplier selection is critically reviewed. Based on this, a two phase fuzzy goal programming approach integrating hyperbolic membership function is proposed to solve the complex supplier selection problem. Findings Results obtained through the proposed approach are compared to the traditional models (Jadidi et al., 2014; Ozkok and Tiryaki, 2011; Zimmermann, 1978) of supplier selection and were found to be optimal as it achieves higher aspiration level. Practical implications The proposed model is adaptive to solve real world problems of supplier selection as all criteria do not possess the same weights, so the managers can change the criteria and their weights according to their requirement. Originality/value This paper provides the decision makers a robust framework to evaluate and select sustainable supplier based on both quantitative and qualitative data. The results obtained through the proposed model achieve greater satisfaction level as compared to those achieved by traditional methods.


2013 ◽  
Vol 58 (3) ◽  
pp. 863-866 ◽  
Author(s):  
J. Duda ◽  
A. Stawowy

Abstract In the paper we studied a production planning problem in a mid-size foundry that provides tailor-made cast products in small lots for a large number of clients. Assuming that a production bottleneck is the furnace, a mixed-integer programming (MIP) model is proposed to determine the lot size of the items and the required alloys to be produced during each period of the finite planning horizon that is subdivided into smaller periods. As using an advanced commercial MIP solvers may be impractical for more complex and large problem instances, we proposed and compared a few computational intelligence heuristics i.e. tabu search, genetic algorithm and differential evolution. The examination showed that heuristic approaches can provide a good compromise between speed and quality of solutions and can be used in real-world production planning.


Sign in / Sign up

Export Citation Format

Share Document