scholarly journals On the Parity of the Order of Appearance in the Fibonacci Sequence

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1928
Author(s):  
Pavel Trojovský

Let (Fn)n≥0 be the Fibonacci sequence. The order of appearance function (in the Fibonacci sequence) z:Z≥1→Z≥1 is defined as z(n):=min{k≥1:Fk≡0(modn)}. In this paper, among other things, we prove that z(n) is an even number for almost all positive integers n (i.e., the set of such n has natural density equal to 1).

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2638
Author(s):  
Eva Trojovská ◽  
Kandasamy Venkatachalam

The order of appearance of n (in the Fibonacci sequence) z(n) is defined as the smallest positive integer k for which n divides the k—the Fibonacci number Fk. Very recently, Trojovský proved that z(n) is an even number for almost all positive integers n (in the natural density sense). Moreover, he conjectured that the same is valid for the set of integers n ≥ 1 for which the integer 4 divides z(n). In this paper, among other things, we prove that for any k ≥ 1, the number z(n) is divisible by 2k for almost all positive integers n (in particular, we confirm Trojovský’s conjecture).


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2912
Author(s):  
Eva Trojovská ◽  
Venkatachalam Kandasamy

Let (Fn)n be the sequence of Fibonacci numbers. The order of appearance (in the Fibonacci sequence) of a positive integer n is defined as z(n)=min{k≥1:n∣Fk}. Very recently, Trojovská and Venkatachalam proved that, for any k≥1, the number z(n) is divisible by 2k, for almost all integers n≥1 (in the sense of natural density). Moreover, they posed a conjecture that implies that the same is true upon replacing 2k by any integer m≥1. In this paper, in particular, we prove this conjecture.


2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .


2021 ◽  
Vol 6 (10) ◽  
pp. 10596-10601
Author(s):  
Yahui Yu ◽  
◽  
Jiayuan Hu ◽  

<abstract><p>Let $ k $ be a fixed positive integer with $ k &gt; 1 $. In 2014, N. Terai <sup>[<xref ref-type="bibr" rid="b6">6</xref>]</sup> conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. This is still an unsolved problem as yet. For any positive integer $ n $, let $ Q(n) $ denote the squarefree part of $ n $. In this paper, using some elementary methods, we prove that if $ k\equiv 3 $ (mod 4) and $ Q(k-1)\ge 2.11 $ log $ k $, then the equation has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. It can thus be seen that Terai's conjecture is true for almost all positive integers $ k $ with $ k\equiv 3 $(mod 4).</p></abstract>


10.37236/3204 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Karyn McLellan

The random Fibonacci sequence is defined by $t_1 = t_2 = 1$ and $t_n = \pm t_{n-1} + t_{n-2}$, for $n \geq 3$, where each $\pm$ sign is chosen at random with probability $P(+) = P(-) = \frac{1}{2}$. Viswanath has shown that almost all random Fibonacci sequences grow exponentially at the rate $1.13198824\ldots$. We will consider what happens to random Fibonacci sequences when we remove the randomness; specifically, we will choose coefficients which belong to the set $\{1, -1\}$ and form periodic cycles. By rewriting our recurrences using matrix products, we will analyze sequence growth and develop criteria based on eigenvalue, trace and order for determining whether a given sequence is bounded, grows linearly or grows exponentially. Further, we will introduce an equivalence relation on the coefficient cycles such that each equivalence class has a common growth rate, and consider the number of such classes for a given cycle length.


2003 ◽  
Vol 87 (509) ◽  
pp. 203-208
Author(s):  
R. P. Burn

Those who enjoy number patterns will no doubt have had many hours of pleasure exploring the Fibonacci sequence to various moduli, and especially in recognising the regularity with which various prime factors occur in thesequence (see [1]). Gill Hatch’s question is whether the occurrence of prime factors in generalised Fibonacci sequences is similarly predictable. Generalised Fibonacci sequences (Gn), abbreviated to GF sequences, are sequences of positive integers derived from the recurrence relation tn + 2 = tn + 1 + tn. In the case of the Fibonacci sequence (Fn), the first two terms are 1 and 1.


Sign in / Sign up

Export Citation Format

Share Document