scholarly journals Jewel: A Novel Method for Joint Estimation of Gaussian Graphical Models

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2105
Author(s):  
Claudia Angelini ◽  
Daniela De De Canditiis ◽  
Anna Plaksienko

In this paper, we consider the problem of estimating multiple Gaussian Graphical Models from high-dimensional datasets. We assume that these datasets are sampled from different distributions with the same conditional independence structure, but not the same precision matrix. We propose jewel, a joint data estimation method that uses a node-wise penalized regression approach. In particular, jewel uses a group Lasso penalty to simultaneously guarantee the resulting adjacency matrix’s symmetry and the graphs’ joint learning. We solve the minimization problem using the group descend algorithm and propose two procedures for estimating the regularization parameter. Furthermore, we establish the estimator’s consistency property. Finally, we illustrate our estimator’s performance through simulated and real data examples on gene regulatory networks.

Author(s):  
Bochao Jia ◽  
Faming Liang ◽  

SUMMARYMotivated by the study of the molecular mechanism underlying type 1 diabetes with gene expression data collected from both patients and healthy controls at multiple time points, we propose a hybrid Bayesian method for jointly estimating multiple dependent Gaussian graphical models with data observed under distinct conditions, which avoids inversion of high-dimensional covariance matrices and thus can be executed very fast. We prove the consistency of the proposed method under mild conditions. The numerical results indicate the superiority of the proposed method over existing ones in both estimation accuracy and computational efficiency. Extension of the proposed method to joint estimation of multiple mixed graphical models is straightforward.


2020 ◽  
Author(s):  
Victor Bernal ◽  
Rainer Bischoff ◽  
Peter Horvatovich ◽  
Victor Guryev ◽  
Marco Grzegorczyk

Abstract Background: In systems biology, it is important to reconstruct regulatory networks from quantitative molecular profiles. Gaussian graphical models (GGMs) are one of the most popular methods to this end. A GGM consists of nodes (representing the transcripts, metabolites or proteins) inter-connected by edges (reflecting their partial correlations). Learning the edges from quantitative molecular profiles is statistically challenging, as there are usually fewer samples than nodes (‘high dimensional problem’). Shrinkage methods address this issue by learning a regularized GGM. However, it is an open question how the shrinkage affects the final result and its interpretation.Results: We show that the shrinkage biases the partial correlation in a non-linear way. This bias does not only change the magnitudes of the partial correlations but also affects their order. Furthermore, it makes networks obtained from different experiments incomparable and hinders their biological interpretation. We propose a method, referred to as the ‘un-shrunk’ partial correlation, which corrects for this non-linear bias. Unlike traditional methods, which use a fixed shrinkage value, the new approach provides partial correlations that are closer to the actual (population) values and that are easier to interpret. We apply the ‘un-shrunk’ method to two gene expression datasets from Escherichia coli and Mus musculus.Conclusions: GGMs are popular undirected graphical models based on partial correlations. The application of GGMs to reconstruct regulatory networks is commonly performed using shrinkage to overcome the “high-dimensional” problem. Besides it advantages, we have identified that the shrinkage introduces a non-linear bias in the partial correlations. Ignoring this type of effects caused by the shrinkage can obscure the interpretation of the network, and impede the validation of earlier reported results.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Victor Bernal ◽  
Rainer Bischoff ◽  
Peter Horvatovich ◽  
Victor Guryev ◽  
Marco Grzegorczyk

Abstract Background In systems biology, it is important to reconstruct regulatory networks from quantitative molecular profiles. Gaussian graphical models (GGMs) are one of the most popular methods to this end. A GGM consists of nodes (representing the transcripts, metabolites or proteins) inter-connected by edges (reflecting their partial correlations). Learning the edges from quantitative molecular profiles is statistically challenging, as there are usually fewer samples than nodes (‘high dimensional problem’). Shrinkage methods address this issue by learning a regularized GGM. However, it remains open to study how the shrinkage affects the final result and its interpretation. Results We show that the shrinkage biases the partial correlation in a non-linear way. This bias does not only change the magnitudes of the partial correlations but also affects their order. Furthermore, it makes networks obtained from different experiments incomparable and hinders their biological interpretation. We propose a method, referred to as ‘un-shrinking’ the partial correlation, which corrects for this non-linear bias. Unlike traditional methods, which use a fixed shrinkage value, the new approach provides partial correlations that are closer to the actual (population) values and that are easier to interpret. This is demonstrated on two gene expression datasets from Escherichia coli and Mus musculus. Conclusions GGMs are popular undirected graphical models based on partial correlations. The application of GGMs to reconstruct regulatory networks is commonly performed using shrinkage to overcome the ‘high-dimensional problem’. Besides it advantages, we have identified that the shrinkage introduces a non-linear bias in the partial correlations. Ignoring this type of effects caused by the shrinkage can obscure the interpretation of the network, and impede the validation of earlier reported results.


Biometrics ◽  
2017 ◽  
Vol 73 (3) ◽  
pp. 769-779 ◽  
Author(s):  
Zhixiang Lin ◽  
Tao Wang ◽  
Can Yang ◽  
Hongyu Zhao

2020 ◽  
Vol 14 (1) ◽  
pp. 2439-2483
Author(s):  
Yuhao Wang ◽  
Santiago Segarra ◽  
Caroline Uhler

2019 ◽  
Vol 35 (23) ◽  
pp. 5011-5017 ◽  
Author(s):  
Victor Bernal ◽  
Rainer Bischoff ◽  
Victor Guryev ◽  
Marco Grzegorczyk ◽  
Peter Horvatovich

Abstract Motivation One of the main goals in systems biology is to learn molecular regulatory networks from quantitative profile data. In particular, Gaussian graphical models (GGMs) are widely used network models in bioinformatics where variables (e.g. transcripts, metabolites or proteins) are represented by nodes, and pairs of nodes are connected with an edge according to their partial correlation. Reconstructing a GGM from data is a challenging task when the sample size is smaller than the number of variables. The main problem consists in finding the inverse of the covariance estimator which is ill-conditioned in this case. Shrinkage-based covariance estimators are a popular approach, producing an invertible ‘shrunk’ covariance. However, a proper significance test for the ‘shrunk’ partial correlation (i.e. the GGM edges) is an open challenge as a probability density including the shrinkage is unknown. In this article, we present (i) a geometric reformulation of the shrinkage-based GGM, and (ii) a probability density that naturally includes the shrinkage parameter. Results Our results show that the inference using this new ‘shrunk’ probability density is as accurate as Monte Carlo estimation (an unbiased non-parametric method) for any shrinkage value, while being computationally more efficient. We show on synthetic data how the novel test for significance allows an accurate control of the Type I error and outperforms the network reconstruction obtained by the widely used R package GeneNet. This is further highlighted in two gene expression datasets from stress response in Eschericha coli, and the effect of influenza infection in Mus musculus. Availability and implementation https://github.com/V-Bernal/GGM-Shrinkage Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-33
Author(s):  
Beilun Wang ◽  
Jiaqi Zhang ◽  
Yan Zhang ◽  
Meng Wang ◽  
Sen Wang

Recently, the Internet of Things (IoT) receives significant interest due to its rapid development. But IoT applications still face two challenges: heterogeneity and large scale of IoT data. Therefore, how to efficiently integrate and process these complicated data becomes an essential problem. In this article, we focus on the problem that analyzing variable dependencies of data collected from different edge devices in the IoT network. Because data from different devices are heterogeneous and the variable dependencies can be characterized into a graphical model, we can focus on the problem that jointly estimating multiple, high-dimensional, and sparse Gaussian Graphical Models for many related tasks (edge devices). This is an important goal in many fields. Many IoT networks have collected massive multi-task data and require the analysis of heterogeneous data in many scenarios. Past works on the joint estimation are non-distributed and involve computationally expensive and complex non-smooth optimizations. To address these problems, we propose a novel approach: Multi-FST. Multi-FST can be efficiently implemented on a cloud-server-based IoT network. The cloud server has a low computational load and IoT devices use asynchronous communication with the server, leading to efficiency. Multi-FST shows significant improvement, over baselines, when tested on various datasets.


Sign in / Sign up

Export Citation Format

Share Document