scholarly journals Vertically Aligned Carbon Nanotube Membranes: Water Purification and Beyond

Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 273
Author(s):  
Jeong Hoon Lee ◽  
Han-Shin Kim ◽  
Eun-Tae Yun ◽  
So-Young Ham ◽  
Jeong-Hoon Park ◽  
...  

Vertically aligned carbon nanotube (VACNT) membranes have attracted significant attention for water purification owing to their ultra-high water permeability and antibacterial properties. In this paper, we critically review the recent progresses in the synthesis of VACNT arrays and fabrication of VACNT membrane methods, with particular emphasis on improving water permeability and anti-biofouling properties. Furthermore, potential applications of VACNT membranes other than water purification (e.g., conductive membranes, electrodes in proton exchange membrane fuel cells, and solar electricity–water generators) have been introduced. Finally, future outlooks are provided to overcome the limitations of commercialization and desalination currently faced by VACNT membranes. This review will be useful to researchers in the broader scientific community as it discusses current and new trends regarding the development of VACNT membranes as well as their potential applications.

2006 ◽  
Vol 158 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Xin Wang ◽  
Wenzhen Li ◽  
Zhongwei Chen ◽  
Mahesh Waje ◽  
Yushan Yan

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1383 ◽  
Author(s):  
Liping Fan ◽  
Junyi Shi ◽  
Tian Gao

Proton exchange membrane is an important factor affecting the power generation capacity and water purification effect of microbial fuel cells. The performance of microbial fuel cells can be improved by modifying the proton exchange membrane by some suitable method. Microbial fuel cells with membranes modified by SiO2/PVDF (polyvinylidene difluoride), sulfonated PVDF and polymerized MMA (methyl methacrylate) electrolyte were tested and their power generation capacity and water purification effect were compared. The experimental results show that the three membrane modification methods can improve the power generation capacity and water purification effect of microbial fuel cells to some extent. Among them, the microbial fuel cell with the polymerized MMA modified membrane showed the best performance, in which the output voltage was 39.52 mV, and the electricity production current density was 18.82 mA/m2, which was 2224% higher than that of microbial fuel cell with the conventional Nafion membrane; and the COD (chemical oxygen demand) removal rate was 54.8%, which was 72.9% higher than that of microbial fuel cell with the conventional Nafion membrane. Modifying the membrane with the polymerized MMA is a very effective way to improve the performance of microbial fuel cells.


2007 ◽  
Vol 60 (7) ◽  
pp. 528 ◽  
Author(s):  
Jason M. Tang ◽  
Kurt Jensen ◽  
Wenzhen Li ◽  
Mahesh Waje ◽  
Paul Larsen ◽  
...  

A simple and promising fuel-cell architecture is demonstrated using a carbon nanotube free-standing membrane (CNTFSM) made from Pt supported on purified single-walled carbon nanotubes (Pt/SWNT), which act as the catalyst layer in a hydrogen proton exchange membrane fuel cell without the need for Nafion in the catalyst layer. The CNTFSM made from Pt/SWNT at a loading of 0.082 mg Pt cm–2 exhibits higher performance with a peak power density of 0.675 W cm–2 in comparison with a commercially available E-TEK electrocatalyst made of Pt supported on XC-72 carbon black, which had a peak power density of 0.395 W cm–2 at a loading of 0.084 mg Pt cm–2 also without Nafion in the catalyst layer.


2010 ◽  
Vol 3 (9) ◽  
pp. 1286 ◽  
Author(s):  
Weimin Zhang ◽  
Peter Sherrell ◽  
Andrew I. Minett ◽  
Joselito M. Razal ◽  
Jun Chen

Sign in / Sign up

Export Citation Format

Share Document