conductive membranes
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 50)

H-INDEX

28
(FIVE YEARS 6)

Author(s):  
Md Nazibul Islam ◽  
Steven M Doria ◽  
Zachary R Gagnon ◽  
Xiaotong Fu

Over the last two decades, microfluidics has received significant attention from both academia and industry, and researchers report thousands of new prototype devices each year for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within microfluidic devices themselves remains expensive and often cost prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise and real time pressure and flow rate measurement capabilities has become increasingly important. While many labs use commercial platforms and sensor, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy -to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS-Carbon black conductive membranes and uses an impedance analyzer to measure impedance change due fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on pressure gradient.


2021 ◽  
Vol 22 (4) ◽  
pp. 775-780
Author(s):  
M.M. Zhyhailo ◽  
I.Yu. Yevchuk ◽  
O.I. Demchyna ◽  
V.V. Kochubei ◽  
O.I. Makota

Using UV-curing technique the proton conductive polymer materials based on acrylic monomers: 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylic acid (AA) and acrylonitrile (AN), cross-linked by varying amounts of N,N'-methylene(bis)acrylamide (MBA), and the hybrid polymer/inorganic membrane of the same content with addition of sol-gel system (SGS) based on 3-methacryloxypropyl trimethoxysilane (MAPTMS) and tetraethoxysilane (TEOS) were synthesized. The obtained materials were characterized by analysis of thermal, mechanical and morphological properties. Proton conductivity and water uptake were found to depend on the level of cross-linking of the materials. The value of proton conductivity of the hybrid membrane was sufficiently high reaching 3.46 × 10-2 S cm-1.


Author(s):  
Md Nazibul Islam ◽  
Steven M Doria ◽  
Zachary R Gagnon

Over the last two decades, microfluidics has received significant attention from both academia and industry, and researchers report thousands of new prototype devices each year for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within microfluidic devices themselves remains expensive and often cost prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise and real time pressure and flow rate measurement capabilities has become increasingly important. While many labs use commercial platforms and sensor, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy -to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS-Carbon black conductive membranes and uses an impedance analyzer to measure impedance change due fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on pressure gradient.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 703
Author(s):  
Yi Ding ◽  
Zhansheng Guo ◽  
Xinan Dong ◽  
Hong You ◽  
Junxue Mei ◽  
...  

Based on carboxylated multi-walled carbon nanotubes (MWCNTs-COOH), a MWCNTs/PVDF conductive membrane was prepared by a vacuum filtration cross-linking method. The surface compositions and morphology of conductive membranes were studied by X-ray photoelectron spectroscopy and high-resolution field emission scanning electron microscopy, respectively. The effects of cross-linked polymeric polyvinyl alcohol (PVA) on the conductive membrane properties such as the porosity, pore size distribution, pure water flux, conductivity, hydrophilicity, stability and antifouling properties were investigated. Results showed that the addition of PVA to the MWCNTs/PVDF conductive membrane decreased the pure water flux, porosity and the conductivity. However, the hydrophilicity of the modified MWCNTs/PVDF conductive membrane was greatly improved, and the contact angle of pure water was reduced from 70.18° to 25.48° with the addition of PVA contents from 0 wt% to 0.05 wt%. Meanwhile, the conductive membranes with higher content had a relatively higher stability. It was found that the conductive functional layer of the conductive membrane had an average mass loss rate of 1.22% in the 30 min ultrasonic oscillation experiment. The tensile intensity and break elongation ratio of the conductive membrane are improved by the addition of PVA, and the durability of the conductive membrane with PVA was superior to that without PVA added. The electric assisted anti-fouling experiments of modified conductive membrane indicated that compared with the condition without electric field, the average flux attenuation of the conductive membrane was reduced by 11.2%, and the membrane flux recovery rate reached 97.05%. Moreover, the addition of PVA could accelerate the clean of the conductive membranes.


2021 ◽  
Author(s):  
Dmitry V Zaretsky ◽  
Maria V Zaretskaia ◽  
Yaroslav I Molkov

Alzheimer's disease (AD) is the most common cause of dementia affecting millions of people. Neuronal death in AD is initiated by oligomeric amyloid-β (Aβ) peptides. Recently, we proposed the amyloid degradation toxicity hypothesis, which explains multiple major observations associated with AD - such as autophagy failure and a decreased metabolism. According to the hypothesis, the key event in the cellular toxicity of amyloid is the formation of non-selective membrane channels in lysosomal membranes by amyloid fragments that are produced by the digestion of Aβ previously absorbed by endocytosis. Electrophysiological data suggest that amyloid-formed channels have different sizes, which can be explained by the fact that barrel-shaped amyloid aggregates which create channels can consist of different number of monomers. To estimate the ability of channels to leak molecules of various molecular weights, we modeled the channels as saline-filled cylinders in non-conductive membranes that pass spheres with a density of average globular proteins. As a basis, we used the conductance distribution taken from the previously published experimental dataset, in which single channels with a conductance reaching one nanosiemens were registered. Our calculations show that channels with a giant conductance can allow for passing macromolecules such as lysosomal cathepsins implicated in the activation of apoptosis. The formation of giant channels is disproportionally promoted in an acidic environment. Also, amyloid fragments leaking from permeabilized lysosomes can reach the internal leaflet of the plasma membrane and permeabilize it. We conclude that while dissipation of the proton gradient by any - even the smallest amyloid channel - readily explains lysosomal failure, the relatively rare events of lysosomal permeabilization to large macromolecules can be an alternative mechanism of cellular death induced by exposure to Aβ.


2021 ◽  
Vol 632 ◽  
pp. 119355
Author(s):  
Qing Dai ◽  
Ziming Zhao ◽  
Mengqi Shi ◽  
Congzhi Deng ◽  
Huamin Zhang ◽  
...  

2021 ◽  
pp. 131184
Author(s):  
Shaheen F. Anis ◽  
Boor S. Lalia ◽  
Alain Lesimple ◽  
Raed Hashaikeh ◽  
Nidal Hilal

2021 ◽  
Vol 627 ◽  
pp. 119181
Author(s):  
Mohamad Amin Halali ◽  
Melissa Larocque ◽  
Charles-Franҫois de Lannoy

Sign in / Sign up

Export Citation Format

Share Document