scholarly journals A Review of the Recent Progress in the Development of Nanocomposites Based on Poly(ether-block-amide) Copolymers as Membranes for CO2 Separation

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 10
Author(s):  
Gabriele Clarizia ◽  
Paola Bernardo

An inspiring challenge for membrane scientists is to exceed the current materials’ performance while keeping the intrinsic processability of the polymers. Nanocomposites, as mixed-matrix membranes, represent a practicable response to this strongly felt need, since they combine the superior properties of inorganic fillers with the easy handling of the polymers. In the global strategy of containing the greenhouse effect by pursuing a model of sustainable growth, separations involving CO2 are some of the most pressing topics due to their implications in flue gas emission and natural gas upgrading. For this purpose, Pebax copolymers are being actively studied by virtue of a macromolecular structure that comprises specific groups that are capable of interacting with CO2, facilitating its transport with respect to other gas species. Interestingly, these copolymers show a high versatility in the incorporation of nanofillers, as proved by the large number of papers describing nanocomposite membranes based on Pebax for the separation of CO2. Since the field is advancing fast, this review will focus on the most recent progress (from the last 5 years), in order to provide the most up-to-date overview in this area. The most recent approaches for developing Pebax-based mixed-matrix membranes will be discussed, evidencing the most promising filler materials and analyzing the key-factors and the main aspects that are relevant in terms of achieving the best effectiveness of these multifaceted membranes for the development of innovative devices.

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 666
Author(s):  
Chong Yang Chuah ◽  
Xu Jiang ◽  
Kunli Goh ◽  
Rong Wang

Membrane separation is a compelling technology for hydrogen separation. Among the different types of membranes used to date, the mixed-matrix membranes (MMMs) are one of the most widely used approaches for enhancing separation performances and surpassing the Robeson upper bound limits for polymeric membranes. In this review, we focus on the recent progress in MMMs for hydrogen separation. The discussion first starts with a background introduction of the current hydrogen generation technologies, followed by a comparison between the membrane technology and other hydrogen purification technologies. Thereafter, state-of-the-art MMMs, comprising emerging filler materials that include zeolites, metal-organic frameworks, covalent organic frameworks, and graphene-based materials, are highlighted. The binary filler strategy, which uses two filler materials to create synergistic enhancements in MMMs, is also described. A critical evaluation on the performances of the MMMs is then considered in context, before we conclude with our perspectives on how MMMs for hydrogen separation can advance moving forward.


2020 ◽  
Vol 159 ◽  
pp. 236-247 ◽  
Author(s):  
Nadia Hartini Suhaimi ◽  
Yin Fong Yeong ◽  
Norwahyu Jusoh ◽  
Thiam Leng Chew ◽  
Mohamad Azmi Bustam ◽  
...  

Desalination ◽  
2006 ◽  
Vol 199 (1-3) ◽  
pp. 401-402 ◽  
Author(s):  
Samuel Bertelle ◽  
Tarakranjan Gupta ◽  
Denis Roizard ◽  
Cécile Vallières ◽  
Eric Favre

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Sara Najari ◽  
Samrand Saeidi ◽  
Fausto Gallucci ◽  
Enrico Drioli

Abstract The separation and purification of light hydrocarbons are significant challenges in the petrochemical and chemical industries. Because of the growing demand for light hydrocarbons and the environmental and economic issues of traditional separation technologies, much effort has been devoted to developing highly efficient separation techniques. Accordingly, polymeric membranes have gained increasing attention because of their low costs and energy requirements compared with other technologies; however, their industrial exploitation is often hampered because of the trade-off between selectivity and permeability. In this regard, high-performance mixed matrix membranes (MMMs) are prepared by embedding various organic and/or inorganic fillers into polymeric materials. MMMs exhibit the advantageous and disadvantageous properties of both polymer and filler materials. In this review, the influence of filler on polymer chain packing and membrane sieving properties are discussed. Furthermore, the influential parameters affecting MMMs affinity toward hydrocarbons separation are addressed. Selection criteria for a suitable combination of polymer and filler are discussed. Moreover, the challenges arising from polymer/filler interactions are analyzed to allow for the successful implementation of this promising class of membranes.


Sign in / Sign up

Export Citation Format

Share Document