scholarly journals A Time-Sequence Simulation Method for Power Unit’s Monthly Energy-Trade Scheduling with Multiple Energy Sources

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 771 ◽  
Author(s):  
Liang Sun ◽  
Qi Zhang ◽  
Na Zhang ◽  
Zhuoran Song ◽  
Xinglong Liu ◽  
...  

The uncertainty of new energy output from wind power is rarely considered in the monthly energy-trade scheduling. This causes many problems since the new energy penetration level increases. The fairness of the scheduled energy for the power suppliers is difficult to guarantee. Because the actual power system operation is far away from scheduling when the monthly energy-trade schedule is carried out, unnecessary wind curtailment might occur, and even the feasibility of monthly energy-trade schedule might not be guaranteed. This affects the security and reliability of the power system operation. In this paper, a new time-sequence simulation method for the monthly energy-trade scheduling is proposed, which considers the new energy power forecasting characteristic and the computational load problem of hourly energy-trade simulation in the remaining months. The proposed method is based on a segment modelling strategy. The power generation in the scheduling month is optimized hourly, and the energy generation is optimized in the subsequent months on a monthly basis. For the scheduling month, accurate cost function is applied in the objective function, and detailed short-term operation constraints and the new energy forecasting results are considered, which can guarantee the feasibility of the new monthly energy-trade scheduling and lay a solid foundation for daily dispatching. For the subsequent months, since the load forecast accuracy is lower and no wind power forecasting results could be used, the rough cost function is applied, and only monthly constraints are considered. To ensure a balance in the execution progress of each power generating entity, the simulation time-scale is set as the remainder of the months in the study year. The new approach ensures the fairness of power execution progress and improves the new energy consumption level. A case study was used to verify the feasibility and effectiveness of the proposed method, which provides a theoretical reference for the monthly electrical energy-trade scheduling.

Energies ◽  
2014 ◽  
Vol 7 (7) ◽  
pp. 4281-4299 ◽  
Author(s):  
Hyeon-Gon Park ◽  
Jae-Kun Lyu ◽  
YongCheol Kang ◽  
Jong-Keun Park

2012 ◽  
Vol 36 (1) ◽  
pp. 69-80 ◽  
Author(s):  
John Olav Giæver Tande ◽  
Magnus Korpås ◽  
Kjetil Uhlen

At many locations with excellent wind conditions the wind farm development is hindered by grid issues. Conservative assumptions are often applied that unnecessarily limits the wind power installation. This paper shows that significantly more wind power can be allowed by taking proper account of the wind power characteristics and facilitating coordinated power system operation. A systematic approach is developed for assessing grid integration of wind farms subject to grid congestions. The method is applied to a case of connecting offshore wind farms to regional grid with hydro generation (380 MW) and loads (75–350 MW). The tie to the main grid is via a corridor with limited capacity (420 MW). With conservative assumptions (i.e. no changes in scheduled hydro generation or control of wind power output) the wind power installation is limited to 115 MW. The system operation is simulated on an hourly basis for multiple years taking into account the stochastic variations of wind speed and hydro inflow as well as the geographical distribution of wind farms. The simulation uses a control strategy for coordinated power system operation that maximises wind penetration. By using the developed methodology the wind power capacity can be increased from 115 MW to at least 600 MW with relatively little income reduction from energy sales compared to a case with unlimited grid capacity. It is concluded that coordinated operation allows for the integration of surprisingly large amounts of wind power. In order to realize the increase in transfer capability, it is essential to take account of the power system flexibility and the stochastic and dispersed nature of wind power. The presented methodology facilitates this and represents a rational approach for power system planning of wind farms.


Author(s):  
Andrej F. Gubina ◽  
Andrew Keane ◽  
Peter Meibom ◽  
Jonathan O'Sullivan ◽  
Oisin Goulding ◽  
...  

2015 ◽  
Vol 30 (3) ◽  
pp. 1359-1368 ◽  
Author(s):  
Michael Negnevitsky ◽  
Dinh Hieu Nguyen ◽  
Marian Piekutowski

Sign in / Sign up

Export Citation Format

Share Document