scholarly journals Introducing Oxygen Vacancies in Li4Ti5O12 via Hydrogen Reduction for High-Power Lithium-Ion Batteries

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1655
Author(s):  
Yiguang Zhou ◽  
Shuhao Xiao ◽  
Zhenzhe Li ◽  
Xinyan Li ◽  
Jintao Liu ◽  
...  

Li4Ti5O12 (LTO), known as a zero-strain material, is widely studied as the anode material for lithium-ion batteries owing to its high safety and long cycling stability. However, its low electronic conductivity and Li diffusion coefficient significantly deteriorate its high-rate performance. In this work, we proposed a facile approach to introduce oxygen vacancies into the commercialized LTO via thermal treatment under Ar/H2 (5%). The oxygen vacancy-containing LTO demonstrates much better performance than the sample before H2 treatment, especially at high current rates. Density functional theory calculation results suggest that increasing oxygen vacancy concentration could enhance the electronic conductivity and lower the diffusion barrier of Li+, giving rise to a fast electrochemical kinetic process and thus improved high-rate performance.

NANO ◽  
2020 ◽  
Vol 15 (07) ◽  
pp. 2050095
Author(s):  
Nan Luo ◽  
Guoliang Chen ◽  
Yunfan Shang ◽  
Suyang Lu ◽  
Jun Mei ◽  
...  

Ti2[Formula: see text][Formula: see text] (TNO) is considered as a potential anode material due to its high capacity/power density and reliable safety. However, its poor electronic conductivity restricts its rate performance, which is important for its application in electric vehicles (EVs). In this study, we fabricated a hybrid of Ti2[Formula: see text][Formula: see text]/holey-reduced graphene oxide (TNOx/HRGO) by a two-step method. In the structure of TNOx/HRGO, TNOx microspheres with oxygen vacancies are wrapped by gossamer-like HRGO. The oxygen vacancies of TNOx and the high conductivity of HRGO can effectively enhance the electronic conductivity of the TNOx/HRGO hybrid, and the HRGO holes are beneficial for the transmission of lithium-ion ([Formula: see text]). The synergy effect of above features improves the rate performance of the TNOx/HRGO hybrid. In addition, the existence of HRGO can buffer volume expansion during the insertion processes of [Formula: see text], which can improve cyclic stability of the TNOx/HRGO hybrid. Consequently, the TNOx/HRGO electrode has excellent lithium-ion storage capacity, with high-rate performance (242[Formula: see text]mAh/g at 10∘C, 225[Formula: see text]mAh/g at 20∘C and 173[Formula: see text]mAh/g at 40∘C) and excellent cyclic stability (98.0% capacity retention after 300 cycles at 10∘C). This work reveals that TNOx/HRGO can be a potential anode material for high-rate-performance lithium-ion storage.


Ionics ◽  
2021 ◽  
Author(s):  
Xiaole Zhang ◽  
Song Li ◽  
Shenghe Wang ◽  
Kun Liu ◽  
Zining Zhang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (49) ◽  
pp. 43551-43555 ◽  
Author(s):  
Mengmeng Zhen ◽  
Xiao Zhang ◽  
Lu Liu

Novel bi-component-active hierarchical ZnO/ZnCo2O4 nanosheets with mesostructures presented a good high-rate performance for lithium ion batteries.


2017 ◽  
Vol 52 (12) ◽  
pp. 7140-7148 ◽  
Author(s):  
Lijuan Wang ◽  
Xiaojie Wang ◽  
Zhaohui Meng ◽  
Hongjiang Hou ◽  
Baokuan Chen

2018 ◽  
Vol 212 ◽  
pp. 198-201 ◽  
Author(s):  
Xiaochuan Chen ◽  
Renpin Liu ◽  
Lingxing Zeng ◽  
Xiaoxia Huang ◽  
Yixing Fang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (61) ◽  
pp. 49651-49656 ◽  
Author(s):  
Y. L. Wang ◽  
X. Huang ◽  
F. Li ◽  
J. S. Cao ◽  
S. H. Ye

Pristine LNCM and LNCMA as Li-rich cathode materials for lithium ion batteries were synthesized via a sol–gel route. The Al-substituted LNCM sample exhibits an enhanced high rate performance and superior cyclability.


Ionics ◽  
2021 ◽  
Author(s):  
Li Wang ◽  
Li Sheng ◽  
Jin Wang ◽  
Hong Xu ◽  
Guangyu Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document